img

Про route redistribution с помощью IPv6

В этой заключительной статье о перераспределении маршрутов мы проверим работу Route redistribution с помощью IPv6 и увидим небольшое отличие в настройке routes redistributed IPv6 от routes redistributed IPv4.

Предыдущие статьи из цикла:

  1. Часть 1. Перераспределение маршрутов (Route redistribution)
  2. Часть 2. Фильтрация маршрутов с помощью карт маршрутов
  3. Часть 3. Перераспределение маршрутов между автономными системами (AS)

Перераспределение подключенных сетей

Во-первых, рассмотрим маршрутизатор, выполняющий маршрутизацию, предположим, что используется протокол OSPF. Кроме того, предположим, что маршрутизатор имеет несколько интерфейсов, которые участвуют в маршрутизации OSPF. Представьте, что на этом же маршрутизаторе мы запускаем другой протокол маршрутизации (скажем, EIGRP), и мы делаем взаимное перераспределение маршрутов.

Вот что удивительно. Если мы делаем перераспределение маршрута на этом маршрутизаторе, сети IPv4, связанные с интерфейсами этого маршрутизатора, участвующими в OSPF в нашем примере, будут перераспределены в EIGRP. Однако сети IPv6, будут вести себя по-другому. В частности, в сетях IPv6 мы должны ввести дополнительный параметр в нашу конфигурацию перераспределения маршрутов, явно указывая, что мы хотим перераспределить подключенные сети. В противном случае эти маршруты IPv6, связанные с непосредственно с подключенными интерфейсами, не перераспределяются.

Логика такого поведения вытекает из понимания того, что для перераспределения маршрута данный маршрут должен появиться в таблице IP-маршрутизации маршрутизатора. Конечно, когда посмотрим таблицу IP-маршрутизации маршрутизатора и увидим непосредственно подключенные сети, эти сети отображаются как подключенные сети, а не сети, которые были изучены с помощью определенного протокола маршрутизации.

В то время как route redistribution для IPv4 понимает, что сеть напрямую подключена, но участвует в процессе маршрутизации и поэтому будет перераспределена, route redistribution для IPv6 не делает такого предположения. В частности, если мы перераспределяем сети IPv6 из одного протокола маршрутизации в другой, эти сети должны отображаться в таблице маршрутизации IPv6 маршрутизатора вместе с указанием, что они были изучены с помощью перераспределяемого протокола маршрутизации. Конечно, мы можем добавить дополнительный параметр к нашей команде redistribute, чтобы заставить эти непосредственно подключенные сети IPv6 (участвующие в распространяемом протоколе) также быть перераспределенными. Эта настройка будет продемонстрирована немного позже.


Перераспределение в OSPF

В прошлой статье мы обсуждали потенциальную проблему, с которой вы можете столкнуться при распространении в OSPF (в зависимости от вашей версии Cisco IOS). Проблема была связана с подсетями. В частности, по умолчанию в более старых версиях Cisco IOS OSPF только перераспределяет классовые сети в OSPF, если мы не добавим параметр subnets к команде redistribute. Добавление этого параметра позволило перераспределить сети в OSPF, даже если у них не было классовой маски. Пожалуйста, имейте в виду, что последние версии Cisco IOS автоматически добавляют параметр подсети, не требуя от вас ручного ввода.

Однако параметр подсети в IPv6 route redistribution отсутствует. Причина в том, что IPv6 не имеет понятия о подсетях.


Пример route redistribution IPv6

Чтобы продемонстрировать перераспределение маршрутов IPv6, рассмотрим следующую топологию:

топология

Протоколы маршрутизации OSPFv3 и EIGRP для IPv6 уже были настроены на всех маршрутизаторах. Теперь давайте перейдем к маршрутизатору CENTR и настроим взаимное route redistribution между этими двумя автономными системами. Убедимся в этом, проверив таблицу маршрутизации IPv6 маршрутизатора CENTR.

проверим таблицу маршрутизации IPv6 маршрутизатора CENTR

Приведенные выше выходные данные показывают, что мы изучили две сети IPv6 через OSPF, две сети IPv6 через EIGRP, а CENTR напрямую подключен к двум сетям IPv6. Далее, давайте настроим взаимное перераспределение маршрутов между OSPFv3 и EIGRP для IPv6.

CENTR # conf term
Enter configuration commands, one per line. End with CNTL/Z.
CENTR (config)# ipv6 router eigrp 1
CENTR (config-rtr) # redistribute ospf 1 metric 1000000 2 255 1 1500?
include-connected Include connected
match Redistribution of OSPF routes
route-map Route map reference
cr
CENTR (config-rtr) #redistribute ospf 1 metric 1000000 2 255 1 1500 include-connected
CENTR (config-rtr) #exit
CENTR (config) # ipv6 router ospf 1
CENTR (config-rtr) #redistribute eigrp 1?
include-connected Include connected
metric Metric f or redistributed routes
metric-type OSPF/IS-IS exterior metric type for redistributed routes
nssa-only Limit redistributed routes to NSSA areas
route-map Route map reference
tag Set tag for routes redistributed into OSPF
cr
CENTR (config-rtr) #redistribute eigrp 1 include-connected
CENTR (config-rtr) #end
CENTR#

Обратите внимание, что конфигурация взаимного перераспределения маршрутов, используемая для маршрутов IPv6, почти идентична нашей предыдущей конфигурации для перераспределения маршрутов IPv4. Однако для обеих команд перераспределения был указан параметр include-connected. Это позволило маршрутизатору CENTR перераспределить сеть 2003::/64 (непосредственно подключенную к интерфейсу Gig0/1 маршрутизатора CENTR и участвующую в OSPF) в EIGRP. Это также позволило маршрутизатору CENTR перераспределить сеть 2004::/64 (непосредственно подключенную к интерфейсу Gig0/2 маршрутизатора CENTR и участвующую в EIGRP) в OSPF.

Чтобы убедиться, что наша конфигурация рабочая, давайте перейдем на оба маршрутизатора OFF1 и OFF2, убедившись, что каждый из них знает, как достичь всех шести сетей IPv6 в нашей топологии.

show ipv6 route

Вышеприведенные выходные данные подтверждают, что маршрутизаторы OFF1 и OFF2 знают о своих трех непосредственно связанных маршрутах и трех маршрутах, перераспределенных в процессе маршрутизации. Итак, как мы видим, что когда речь заходит о routes redistributed IPv6, то не так уж много нового нужно узнать по сравнению с routes redistributed IPv4.

Ссылка
скопирована
DevOps
Скидка 25%
DevOps-инженер с нуля
Научитесь использовать инструменты и методы DevOps для автоматизации тестирования, сборки и развертывания кода, управления инфраструктурой и ускорения процесса доставки продуктов в продакшн. Станьте желанным специалистом в IT-индустрии и претендуйте на работу с высокой заработной платой.
Получи бесплатный
вводный урок!
Пожалуйста, укажите корректный e-mail
отправили вводный урок на твой e-mail!
Получи все материалы в telegram и ускорь обучение!
img
Еще по теме:
img
Задержка в сети, или сетевая задержка, - это временная задержка при передаче запросов или данных от источника к адресату в сетев
img
Система доменных имен (DNS – Domain Name System) обеспечивает сетевую коммуникацию. DNS может показаться какой-то невидимой сило
img
Wi-Fi это технология, которая использует радиоволны для отправки и получения сигналов от находящихся поблизости устройств, чтобы
img
BGP (Border Gateway Protocol) - это протокол граничного шлюза, предназначенный для обмена информацией о маршрутизации и доступно
img
Когда читаете данную статью, браузер подключается к провайдеру (или ISP) а пакеты, отправленные с компьютера, находят путь до се
img
Современные веб-сайты и приложения генерируют большой трафик и одновременно обслуживают многочисленные запросы клиентов. Баланси
Комментарии
ОСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59