По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Друг, начнем с цитаты: Redis – это высокопроизводительная БД с открытым исходным кодом (лицензия BSD), которая хранит данные в памяти, доступ к которым осуществляется по ключу доступа. Так же Редис это кэш и брокер сообщений. Надо признаться, определение не дает точного понимания, что же такое Redis. Если это так круто, то зачем вообще нужны другие БД? На самом деле, Redis правильнее всего использовать в определенных кейсах, само собой, зная про подводные камни – именно об этом и поговорим. Про установку Redis в CentOS 8 мы рассказываем в этой статье. Redis как база данных Говорим про случай, когда Redis выступает в роли базы данных: Пару слов про ограничения такой модели: Размер БД ограничен доступной памятью Шардинг (техника масштабирования) ведет к увеличению задержки Это NoSQL - никакого языка SQL LUA скриптинг в качестве альтернативы Это нереляционная СУБД! Нет сегментации на пользователей или группы пользователей. Отсутствует контроль доступа Доступ по общему паролю. Что скажут ваши безопасники? Теперь про преимущества модели: Скорость Хранение данных в памяти делает быстрее работу с ними Скрипты на LUA Выполнение прямо в памяти, опять же, ускоряет работу Удобные форматы запросов/данных Geospatial – геоданные (высота, ширина, долгота и так далее) Hyperloglog – статистическе алгоритмы Hash – если коротко, то хэш в Redis делают между строковыми полями и их значениями Алгоритмы устаревания данных Примеры использования Представь, у нас есть приложение, где пользователям необходимо авторизоваться, чтобы выполнять какие – либо действия внутри приложения. Каждый раз, когда мы обновляем авторизационные данные клиента, мы хотим их получать для последующего контроля. Мы могли бы отправлять лист авторизационных параметров (с некими номерами авторизаций, сроком действия с соответствующими подписями), чтобы каждое действие внутри приложения, сопровождалось авторизацонной транзакцией из листа, который мы прислали клиенту. С точки зрения безопасности, в этом подходе нет ничего плохого, если мы храним на своей стороне данные в безопасности и используем Javascript Object Signing and Encryption (JOSE), например. Но проблема появится в том случае, когда наш пользователь имеет более одной авторизации внутри приложения – такие схемы плохо поддаются масштабированию. А что если вместо отправки листа авторизационных параметров, мы сохраним его у себя, а пользователю отправим некий токен, который они должны отправлять для авторизации? Далее, по этому токену, мы легко сможем найти авторизации юзера. Это делает систему гораздо масштабируемой. Redis, такой Redis. Итого, для указанной выше схемы, мы хотим: Скорость Мы не хотим, чтобы пользователь долго ожидал авторизации Масштабирумость системы Сопоставление ключа (токена) с авторизациями юзера А вот, что на эти вызовы может ответить Redis: Redis хранит данные в памяти – он быстрый. Redis можно кластеризовать через компонент Sentinel. Масштабируемость? Пожалуйста. В Redis куча вариантов хранения списков. Самый простой будет являться набором данных. В качестве бонуса от Redis, вы получите механизм экспайринга токенов (устаревания). Все будет работать. Redis как кэш! Redis почти заменил memcached в современных приложениях. Его фичи делают супер – удобным кэширование данных. Ограничения: Значения не могут превышать 512 МБ Отсутствует искусственный интеллект, который будет очищать ваше хранилище данных Профит: Совместное использование кэша разными сервисами по сети Удобные фичи, такие как LUA скриптинг, который упрощает работы с кэшом Временные ограничения для данных Еще один кейс Предположим, перед нами такая задача: приложение, отображает пользователям данные с определенными значениями, которые можно сортировать по множеству признаков. Все наши данные хранятся в БД (например, MySQL) и показывать отсортированные данные нужно часто. Дергать БД каждый раз весьма тяжело и ресурсозатратно, а значит, нам нужно кэшировать данные в отсортированном порядке. Окей, кейс понятен. Рэдис, что скажешь на такие требования? Кэш должен хранить сортированные наборы данных Нам нужно вытаскивать наборы данных внутри наборов данных (для пагинации, например, то есть для переключения между страницами) Это должно быть быстрее, чем пересчет данных с нуля Что скажет Redis: Хранить наборы данных - легко Может вытаскивать сабсеты из наборов - легко Конечно быстрее. Ведь данные хранятся в памяти Redis как брокер сообщений Редис может выступать в качестве брокера сообщений. Схема обычная и весьма базовая - publish–subscribe (pub/sub), или как можно перевести на русский язык «Издатель - подписчик». Как и раньше, давайте обсудим плюсы и минусы, хотя их тут и не так много. Минусы: Только тривиальная модель pub/sub Отсутствие очередей сообщений Ну а плюсы, как обычно для Редиса – скорость и стабильность. Кейс напоследок Простой пример – коллаборация сотрудников одной компании. Предположим, у них есть приложение, где они работают над общими задачами. Каждый пользователь делает свой набор действий, о котором другие пользователи должны знать. А так же, юзеры могут иметь разные экземпляры приложений – десктоп, мобильный или что то еще. Требования по этой задаче: Низкая задержка Мы не хотим иметь трудности в процессе совместной работы сотрудников Стабильная работа и непрерывность Масштабирование Кампания растет и развивается Редис, твой выход! Низкая задержка – да, говорили об этом ранее Стабильность – минимальное количество точек отказа в Redis Стабильная работа и непрерывность Масштабирование – сделаем кластер, нет проблем. Выводы Redis - крутая штука, которая позволяет объединять сервисы и следовать 12 принципам приложений. Для приложений, в которых нагрузка ориентирована на быстрое изменение наборов данных и высокая безопасность данных не имеет завышенных требований – Redis прекрасный выбор. Если данные нуждаются в усиленной защите, Редис подойдет в меньшей степени, лучше посмотрите в сторону MongoDB или Elasticsearch.
img
Друзья, сегодня речь пойдет о синтезе речи в Asterisk. Этот простой способ позволит вам озвучивать требуемое голосовое сообщение в структурах IVR или обычных приветствиях. Да где угодно. Профит этого решения: Единый голос для всех аудио – файлов; Кэширование и сохранение озвученных текстов, фраз в виде медиа - файлов, для последующего использования на Asterisk; Получаем токен Приступим. Прежде всего нужно получить API - токен на использование сервиса от Яндекс. Этот процесс расписан в статье по ссылке ниже (раздел Получение API - токена Yandex.SpeechKit): Получение токена Возвращайтесь с токеном и будем приступать к коду :) Кодим! Для начала создадим директорию /var/lib/asterisk/tts/ и дадим права. Там мы будем хранить текстовый файл, благодаря которому, сможем идентифицировать аудио – файлы по совпадению MD5 названия. Внутри файла будет фраза: mkdir /var/lib/asterisk/tts/ chown asterisk:asterisk /var/lib/asterisk/tts/ chmod 775 /var/lib/asterisk/tts/ В зависимости от дистрибутива и вариантов установки IP – АТС Asterisk, звуковые файлы могут располагаться в другой директории. Вы можете самостоятельно поправить это в скрипте. Использовать будем AGI приложение. Традиционно, комментарии к коду прикладываются: #!/usr/bin/php -q <?php error_reporting(0); // выключаем ошибки, необязательно, нужно в процесcе дебага скрипта require('phpagi.php'); $agi = new AGI(); $str = $agi->request['agi_arg_1']; //записываем в переменную текст, который необходимо озвучить $str = iconv('cp1251', 'utf-8', $str); // конвертируем в кириллическую кодировку $md5 = md5($str); //вычисляем md5 - хэш от переменной $str $prefix = '/var/lib/asterisk/sounds/ru/custom/'; //устанавливаем директорию для файлов. Мы ее создавали по ходу движения $filename = $prefix.$md5; //устанавливаем название файла(оно будет равно md5 текста) $format = 'wav'; //устанавливаем формат получаемого файла от Яндекс $quality = 'hi'; //устанавливаем качество $speaker = 'oksana'; //выбираем голос. На момент написания статьи доступны женские голоса: jane, oksana, alyss и omazh и мужские голоса: zahar и ermil. $emotion = 'evil'; // выбираем интонацию голоса, good — радостный, доброжелательный, evil — раздраженный, neutral — нейтральный (используется по умолчанию). Будем злее :) $speed = '0.9'; // данный параметр отвечает за скорость (темп) речи, подбирается опытным путем на слух, в данном случае оптимальный $key = 'Ваш_токен'; //ваш токен, который вы получили ранее. if (!file_exists($filename.'.wav')) { $qs = http_build_query(array("format" => $format,"quality" => $quality,"lang" => "ru-RU","speaker" => $speaker,"speed" => $speed,"key" => $key,"emotion" => $emotion, "text" => $str)); //формируем строку запроса $ctx = stream_context_create(array("http"=>array("method"=>"GET","header"=>"Referer: "))); $soundfile = file_get_contents("https://tts.voicetech.yandex.net/generate?".$qs, false, $ctx); //запрашиваем файл $file = fopen("file1.wav", "w"); //открываем файл для записи fwrite($file, $soundfile); // пишем в файл данные fclose($file); //закрываем файл shell_exec('sox -t raw -r 48k -e signed-integer -b 16 -c 1 file1.wav -t wav -r 8k -c 1 '.$filename.'.wav'); //конвертируем файл под требования Asterisk и закидываем в директорию для аудио shell_exec('chown asterisk:asterisk '.$filename.'.wav'); shell_exec('chmod 775 '.$filename.'.wav'); // даем файлу нужные пермишны; shell_exec('rm -f file1.wav'); // удаляем файл, который создали в процессе обращения к API; shell_exec('echo '.$str.' > /var/lib/asterisk/tts/'.$md5.'.txt'); // добавляем магии ;-) о ней ниже в тексте статьи. } $agi->exec('Playback',"custom/$md5"); //проигрываем файл звонящему. Скачать скрипт синтеза речи После загрузки файла, сохраните его с расширением .php Сохраняем скрипт как texttospeech.php и закидываем его в директорию /var/lib/asterisk/agi-bin. После, даем последовательность следующих команд: dos2unix /var/lib/asterisk/agi-bin/texttospeech.php chown asterisk:asterisk /var/lib/asterisk/agi-bin/texttospeech.php chmod 775 /var/lib/asterisk/agi-bin/texttospeech.php Как вы могли заметить, скрипт настраивается. Голос, интонация, скорость речи, качество получаемого файла – подлежат корректировке для вашей задачи. Схема работы всего процесса следующая: Скрипт получает из диалплана текст по AGI и сохраняет в переменной; Если у нас уже существует аудио – файл для заранее записанной фразы, мы отдаем в диалплан команду на воспроизведение. Если нет – обращаемся к API; Скрипт отправляет запрос в сторону API Яндекса; Происходит конвертация полученного аудио – файла в нужный формат; Даем права файлу для воспроизведения на Asterisk и удаляем временный файл; Делаем отметку о создании файла в служебный текстовый файл; Воспроизводим файл; А как заставить скрипт работать? Очень просто. Открываем файл /etc/asterisk/extensions_custom.conf для редактирования и добавляем в него следующую запись: [text_to_speech] exten => s,1,Answer() exten => s,2,AGI(texttospeech.php,"Привет! Это Мерион Нетворкс. Если ты слышишь это сообщение, значит все сделал правильно!") Сохраняем изменения и прыгаем в FreePBX. Будем вызывать кастомный контекста из FreePBX. Для этого воспользуемся модулем Custom Destinations. Переходим по пути Admin → Custom Destinations и нажимаем Add Destination: Настроили и сохранили. Наша задумка такова – человек звонит на наш номер, набирает 13 и попадает на синтезированное сообщение. Переходим в главный IVR и в секции IVR Entries добавляем следующее: Звоним, проверяем. Работает :) Если хотите заменить фразу, которую нужно озвучить, просто поправьте ее в файле /etc/asterisk/extensions_custom.conf.
img
В предыдущих лекциях обсуждалось правило кратчайшего пути и два алгоритма (или, возможно, системы) для поиска путей без петель через сеть. Существует широкий спектр таких систем—их слишком много, чтобы охватить их в отведенное время для изучения, - но для сетевых администраторв важно быть знакомыми хотя бы с некоторыми из этих систем. В этих лекциях сначала рассматривается алгоритм поиска кратчайшего пути Дейкстры, вектор пути и два различных алгоритма непересекающихся путей: Suurballe и Maximally Redundant Trees (MRTs). Наконец, в этих лекциях будет рассмотрена еще одна проблема, которую должны решить управляющие плоскости: обеспечение двусторонней связи через сеть. Алгоритм Дейкстры Shortest Path First. Алгоритм Дейкстры Shortest Path First (SPF), возможно, является наиболее широко известной и понятной системой для обнаружения Loop-Free путей в сети. Он используется двумя широко распространенными протоколами маршрутизации и во многих других повседневных системах, таких как программное обеспечение, предназначенное для поиска кратчайшего пути через дорожную сеть или для обнаружения соединений и паттернов соединений в социальных сетях. Алгоритм Дейкстры в псевдокоде использует две структуры данных. Первый - это предварительный список или TENT; этот список содержит набор узлов, рассматриваемых для включения в дерево кратчайшего пути (Shortest Path Tree). Второй - PATH; этот список содержит набор узлов (а следовательно, и каналы), которые находятся в дереве кратчайшего пути. 01 move "me" to the TENT 02 while TENT is not empty { 03 sort TENT 04 selected == first node on TENT 05 if selected is in PATH { 06 *do nothing* 07 } 08 else { 09 add selected to PATH 10 for each node connected to selected in TOPO 11 v = find node in TENT 12 if (!v) 13 move node to TENT 14 else if node.cost < v.cost 15 replace v with node on TENT 16 else 17 remove node from TOPO 18 } 19 } Как всегда, алгоритм менее сложен, чем кажется на первый взгляд; ключом является сортировка двух списков и порядок, в котором узлы обрабатываются вне списка TENT. Вот несколько примечаний к псевдокоду перед рассмотрением примера: Процесс начинается с копии базы данных топологии, называемой здесь TOPO; это будет яснее в примере, но это просто структура, содержащая исходные узлы, целевые узлы и стоимость связи между ними. TENT - это список узлов, которые можно условно считать кратчайшим путем к любому конкретному узлу. PATH - это дерево кратчайшего пути (SPT), структура, содержащая loop-free путь к каждому узлу и следующий переход от «меня» к этому узлу. Первым важным моментом в этом алгоритме является сохранение только узлов, уже каким-то образом связанных с узлом в списке PATH в TENT; это означает, что кратчайший путь в TENT - это следующий кратчайший путь в сети. Второй важный момент в этом алгоритме - это сравнение между любыми существующими узлами TENT, которые подключаются к одному и тому же узлу; это, в сочетании с сортировкой TENT и отделением TENT от PATH, выполняет правило кратчайшего пути. Имея в виду эти моменты, рисунки с 1 по 9 используются для иллюстрации работы алгоритма SPF Дейкстры. На каждой из следующих иллюстраций вместе с сопроводительным описанием показан один шаг алгоритма SPF в этой сети, начиная с рисунка 2. В точке, показанной на рисунке 2, A был перемещен из TOPO в TENT, а затем в PATH. Стоимость исходного узла всегда равна 0; эта линия включена для начала расчета SPF. Это представляет строки с 01 по 09 в псевдокоде, показанном ранее. На рисунке 3 показан второй этап расчета SPF. На рисунке 3 каждый узел, подключенный к A, был перемещен из TOPO в TENT; это строки с 10 по 17 в псевдокоде, показанном ранее. Когда этот шаг начался, в TENT была только A, поэтому в TENT нет существующих узлов, которые могли бы вызвать какие-либо сравнения метрик. Теперь TENT отсортирован, и выполнение продолжается со строки 03 в псевдокоде. Рисунок 4 демонстрирует это. На рисунке 4 один из двух путей с кратчайшей стоимостью - к B и F, каждый со стоимостью 1 - был выбран и перемещен в PATH (строки 05–09 в псевдокоде, показанном ранее). Когда B перемещается из TENT в PATH, любые узлы с началом B в TOPO перемещаются в TENT (строки 10-17 в псевдокоде). Обратите внимание, что C еще не был в TENT, прежде чем он был задействован посредством перехода B к PATH, поэтому сравнение показателей не выполняется. Стоимость для C - это сумма стоимости его предшественника в PATH (который равен B со стоимостью 1) и связи между двумя узлами; следовательно, C добавляется к TENT со стоимостью 2. TENT сортируется (строка 3 псевдокода), поэтому процесс готов к повторному запуску. На рисунке 5 показан следующий шаг в этом процессе. На рисунке 5 был выбран кратчайший путь к TENT, и F переместился от TENT к PATH. Между F и E существует связь (показанная на предыдущих иллюстрациях как [E, F]), но путь через F к E имеет ту же стоимость, что и путь [A, E], поэтому эта линия не добавляется в TENT. Скорее он остается неактивным, поскольку не рассматривается для включения в SPT, и удаляется из TOPO. На рисунке 6 показан следующий шаг в процессе, который переместит один из путей метрики 2 в PATH. Примечание. Большинство реальных реализаций поддерживают перенос нескольких путей с одинаковой стоимостью из TENT в PATH, поэтому они могут пересылать трафик по всем каналам с одинаковой метрикой. Это называется многолучевым распространением с равной стоимостью или ECMP. Для этого есть несколько различных способов, но они в этих лекциях не рассматриваются. На рисунке 6 путь к C через B со стоимостью 2 был перемещен в PATH, а путь к D через [A, B, C, D] перемещен в TENT. Однако при перемещении этого пути к TENT строка 11 в псевдокоде находит существующий путь к D в TENT, путь [A, D], со стоимостью 5. Метрика нового пути, 3, ниже чем метрика существующего пути, 5, поэтому путь [A, D] удаляется из TENT, когда добавляется путь [A, B, C, D] (строка 15 в псевдокоде). На рисунке 7 показан следующий шаг, на котором линия оставшейся стоимости 2 перемещается из TENT в PATH. На рисунке 7 путь к E стоимостью 2 был перемещен из TENT в PATH. G был перемещен в TENT стоимостью 4 (сумма [A, E] и [E, G]). Другой сосед E, F, исследуется, но он уже находится в PATH, поэтому не рассматривается для включения в TENT. На рисунке 8 показан следующий шаг, который перемещает D в PATH. На рисунке 8 D общей стоимостью 3 перемещен из TENT в PATH. Это учитывает соседа D, G, последнюю запись в TOPO, для TENT. Однако уже существует путь к G с общей стоимостью 4 через [A, E, G], поэтому строка 14 в псевдокоде завершается ошибкой, и путь [D, G] удаляется из TOPO. Это последний SPT. Основная трудность в понимании алгоритма Дейкстры заключается в том, что правило кратчайшего пути не выполняется в одном месте (или на одном маршрутизаторе), как это происходит с Bellman-Ford или Diffusing Update Algorithm (DUAL). Кратчайший путь (по-видимому) проверяется только при перемещении узлов из TOPO в TENT - но на самом деле сортировка самого TENT выполняет другую часть правила кратчайшего пути, и проверка по PATH для существующих узлов составляет еще один шаг в процесс, делающий процесс трехступенчатым: Если путь к узлу длиннее, чем любой из TENT, то путь к TENT является более коротким путем по всей сети. Путь, который поднялся к вершине TENT через сортировку, является самым коротким к этому узлу в сети. Если путь перемещается к PATH от вершины TENT, это кратчайший путь к этому узлу в сети, и любые другие записи в TOPO к этому узлу следует отбросить. При наличии базового алгоритма полезно рассмотреть некоторые оптимизации и расчет Loop-Free Alternates (LFAs) и remote Loop-Free Alternates (rLFAs). Частичный и инкрементный SPF Нет особой причины, по которой весь SPT должен перестраиваться каждый раз, когда происходит изменение топологии сети или информации о доступности. Рассмотрим рисунок 9 для объяснения. Предположим, G теряет связь с 2001: db8: 3e8: 100 :: / 64. Устройству A не требуется пересчитывать свой путь к любому из узлов сети. Доступный пункт назначения - это просто лист дерева, даже если это набор хостов, подключенных к одному проводу (например, Ethernet). Нет причин пересчитывать весь SPT, когда один лист (или любой набор листьев) отключается от сети. В этом случае только лист (IP-адрес Интернет-протокола или доступный пункт назначения) должен быть удален из сети (или, скорее, пункт назначения может быть удален из базы данных без каких-либо изменений в сети). Это частичный пересчет SPT. Предположим, что канал [C, E] не работает. Что делает А в этом случае? Опять же, топология C, B и D не изменилась, поэтому у A нет причин пересчитывать все дерево. В этом случае A может удалить все дерево за пределами E. Чтобы вычислить только измененную часть графа, выполните следующие действия: Удалите отказавший узел и все узлы, которые нужно достичь через точку E. Пересчитайте дерево только от предшественника C (в данном случае A), чтобы определить, есть ли альтернативные пути для достижения узлов, ранее доступных через E до того, как канал [C, E] не доступен. Это называется инкрементным SPF. Расчет LFA и rLFA. Bellman-Ford не вычисляет ни соседей ниже по потоку, ни LFA, и, похоже, не располагает необходимой для этого информацией. DUAL по умолчанию вычисляет нисходящих соседей и использует их во время конвергенции. А как насчет протоколов на основе Дейкстры (и, соответственно, аналогичных алгоритмов SPF)? На рисунке 10 показан простой механизм, который эти протоколы могут использовать для поиска LFA и соседних узлов ниже по потоку. Определение нисходящего соседа - это такое, при котором стоимость достижения соседом пункта назначения меньше, чем локальная стоимость достижения пункта назначения. С точки зрения А: A знает местную стоимость проезда к месту назначения на основе SPT, созданного с помощью SPF Дейкстры. A знает стоимость B и C, чтобы добраться до места назначения, вычитая стоимость каналов [A, B] и [A, C] из рассчитанной на местном уровне стоимости. Следовательно, A может сравнивать локальную стоимость со стоимостью от каждого соседа, чтобы определить, находится ли какой-либо сосед в нисходящем направлении по отношению к любому конкретному месту назначения. Определение LFA: Если затраты соседа для «меня» плюс затраты соседа на достижение пункта назначения ниже, чем местные затраты, соседом является LFA. Вернее, учитывая: NC - это стоимость соседа до пункта назначения. BC - это стоимость соседа для меня. LC - местная стоимость до места назначения. Если NC + BC меньше LC, то соседом является LFA. В этом случае A знает стоимость каналов [B, A] и [C, A] с точки зрения соседа (она будет содержаться в таблице топологии, хотя не используется при вычислении SPT с использованием алгоритма Дейкстры). Таким образом, LFA и нисходящие соседи требуют очень небольшой дополнительной работы для расчета, но как насчет удаленных LFA? Модель P/Q Space обеспечивает простейший способ для алгоритмов на основе Дейкстры вычисления соседних узлов и LFA. Рисунок 11 используется для иллюстрации изнутри P/Q Space. Определение пространства P - это набор узлов, доступных с одного конца защищенного соединения, а определение пространства Q - это набор узлов, достижимых без пересечения защищенного канала. Это должно предложить довольно простой способ вычисления этих двух пространств с помощью Дейкстры: Рассчитайте SPT с точки зрения устройства, подключенного к одному концу линии связи; удалить линию связи без пересчета SPT. Остальные узлы доступны с этого конца линии. На рисунке 11 E может: Вычислите пространство Q, удалив линию [E, D] из копии локального SPT и всех узлов, для достижения которых E использует D. Вычислите пространство P, вычислив SPT с точки зрения D (используя D в качестве корня дерева), удалив линию [D, E], а затем все узлы, для достижения которых D использует E. Найдите ближайший узел, достижимый как из E, так и из D, с удаленной линией [E, D]. SPF Дейкстры - это универсальный, широко используемый алгоритм для вычисления Shortest Path Trees через сеть.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59