По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Настройка IPv4-адресации для удаленного доступа к устройствам Cisco Чтобы иметь возможность подключения к коммутатору по Telnet или SSH, а также использовать другие протоколы управления на основе IP (например, Simple Network Management Protocol или SNMP) функционировать должным образом, коммутатору требуется IP-адрес, а также настройки других сопутствующих параметров. IP-адрес не влияет на функциональную работу коммутатора. В этой части будут рассмотрены основные параметры IPv4-адресации, необходимые для настройки коммутатора, а затем будут приведены команды и примеры настроек. Коммутаторы могут быть настроены с параметрами IPv6-адресации. Настройки IPv4 и IPv6 аналогичны. Далее уделим основное внимание исключительно IPv4. Настройки IP-адресации узла и коммутатора Коммутатор нуждается в тех же настройках IP-адресации, что и компьютер с сетевым интерфейсом Ethernet (FastEthernet). Напомню, что каждый ПК имеет процессор. Этот процессор управляется специальной операционной системой для обработки сигналов и отправки их на сетевую карту. Компьютер имеет минимум оду сетевую карту Ethernet (NIC). Настройки сетевой карты ПК включают в себя: настройка статического или получаемого по DHCP IP-адреса сетевой карты.Коммутатор использует те же принципы, что и ПК, но за исключением того, что коммутатор использует виртуальную сетевую карту внутри устройства. Как и ПК, коммутатор имеет реальный процессор, работающий под управлением ОС (IOS). Коммутатор обладает множеством портов Ethernet (FastEthernet, GigEthernet), но в отличие от ПК, коммутатор не назначает IP-адрес управления какому-то конкретному порту или всем сразу. Коммутатор использует NIC концепцию (NIC-like), называемую коммутируемым виртуальным интерфейсом (SVI), или, чаще всего, именуемым интерфейсом VLAN, который действует как отдельная сетевая карта (NIC) коммутатора. Тогда настройки на коммутаторе сводятся к настройке IP-адресации VLAN. Пример настройки показан на рисунке: На рисунке изображен виртуальный ПК, подключенный к другим реальным узлам в сети через виртуальный интерфейс VLAN 1. IP-адрес интерфейса VLAN1-192.168.1.8; маска подсети 225.255.255.0 и подсеть VLAN 1 - 192.168.1.0. Виртуальный ПК и интерфейс VLAN1 являются частью коммутатора. Остальные узлы находятся за пределами коммутатора. Используя интерфейс VLAN 1 с настроенной IP-адресацией, коммутатор может отправлять и получать кадры на любом из портов VLAN 1. В коммутаторе Cisco, по умолчанию, все порты назначены во VLAN 1. В коммутаторах можно настроить большое количество VLAN, поэтому у системного администратора есть выбор, какой VLAN использовать. Таки образом IP-адрес управления не обязательно должен быть настроен именно на VLAN1 Коммутатору Cisco второго уровня (L2) задается только один IP-адрес для управления. Однако можно использовать любой VLAN, через который подключается коммутатор. Настройка включает: настройку т интерфейса VLAN с указанием его номера (например VLAN11) и присвоением соответствующего IP-адреса с маской подсети. Например, на рисунке показан коммутатор 2 уровня с несколькими физическими портами в двух различных VLAN (VLAN 1 и 2). На рисунке также показаны подсети, используемые в этих VLAN. Системный администратор может выбрать для использования передачи данных либо то, либо другое. На рисунке виртуальный ПК коммутатора соединен с другими системами вне устройства с помощью двух интерфейсов VLAN. Подсети виртуальных локальных сетей 192.168.1.0 и 192.168.2.0. Интерфейсу VLAN 1 присвоен Ili-адрес из подсети 192.168.1.0 Интерфейсу VLAN 2, присвоен Ili-адрес из подсети 192.168.2.0 Обратите внимание, что VLAN должен быть привязан к физическому порту коммутатора. Если этого не сделать, то интерфейс VLAN не включится (то есть он будет в состоянии down), и соответственно коммутатор не сможет обмениваться пакетами с другими устройствами в сети. Примечание: Некоторые коммутаторы Cisco могут быть настроены для работы в качестве коммутатора 2 уровня или коммутатора 3 уровня. Действуя в качестве коммутатора 2 уровня, коммутатор обрабатывает, пересылает и управляет пакетами Ethernet. В другом случае, коммутатор может работать как коммутатор 3 уровня. Это означает, что коммутатор может выполнять как коммутацию 2 уровня, так и маршрутизацию IP-пакетов уровня 3, используя логику третьего уровня, обычно используемую маршрутизаторами. В данной статье рассматриваются коммутаторы второго уровня (L2) Настройка IP-адреса (и маски) на одном интерфейсе VLAN позволяет коммутатору обмениваться пакетами с другими узлами в подсети, принадлежащей этой VLAN. Однако коммутатор не может взаимодействовать за пределами локальной подсети без другого параметра конфигурации, называемого шлюзом по умолчанию (default gateway). Причина настройки шлюза по умолчанию на коммутаторе такая же, как и на обычном компьютере. То есть при отправке пакета сетевая карта компьютера думает, как и кому отправить пакет А именно: отправить IP-пакеты узлам, находящимся в той же подсети, напрямую или отправить IP-пакеты узлам, находящимся в другой подсети, через ближайший маршрутизатор, то есть через шлюз по умолчанию. На рисунке изображена данная концепция: На коммутаторе (справа) на VLAN1 настроен IP-адрес 192.168.1.200. Через этот интерфейс (VLAN1) коммутатор может обмениваться пакетами с ПК, входящими в подсеть 192.168.1.0 (желтый сектор) Однако для связи с узлом A, расположенным в левой части рисунка, коммутатор должен использовать маршрутизатор R1 (шлюз по умолчанию) для пересылки IP-пакетов на узел A. Чтобы пакеты дошли до узла А на коммутаторе необходимо произвести настройку шлюза по умолчанию, указав IP-адрес маршрутизатора R1 (в данном случае 192.168.1.1). Обратите внимание, что коммутатор и маршрутизатор используют одну и ту же маску, 255.255.255.0, которая помещает адреса в одну подсеть. Настройка IPv4-адресации на коммутаторе Настройка IP-адресации на коммутаторе осуществляется настройкой на VLAN. Следующие этапы показывают команды, используемые для настройки IPv4 на коммутаторе (настройка IP-адресации на VLAN 1). Введите команду interface vlan 1 в режиме глобальной конфигурации для входа в режим настройки интерфейса VLAN 1. Введите команду ip address <ip-address> <mask> для назначения ip-адреса и маски подсети в режиме конфигурации интерфейса. Введите команду no shutdown в режиме конфигурации интерфейса, чтобы включить интерфейс VLAN 1, если он еще не включен. Введите команду ip default-gateway<ip-address> для назначения ip-адреса шлюза по умолчанию в режиме глобальной конфигурации, чтобы настроить шлюз по умолчанию. (Необязательно) Введите команду ip name-server ip-address1 ip-address2 ... в режиме глобальной конфигурации, чтобы настроить коммутатор на использование DNS для преобразования имен в соответствующие IP-адреса. Пример настройки статической IP-адресации В этом примере показана особенно важная и распространенная команда: команда [no] shutdown. Что бы включить интерфейс ("поднять") на коммутаторе, используйте команду no shutdown в режиме конфигурации интерфейса . Что бы отключить интерфейс используйте в этом же режиме команду shutdown . Эта команда может использоваться на физических интерфейсах Ethernet, которые коммутатор использует для пересылки пакетов Ethernet, а также на интерфейсах VLAN. Кроме того, обратите внимание на сообщения, которые появляются непосредственно под командой no shutdown в примере выше. Эти сообщения являются сообщениями системного журнала, генерируемыми коммутатором, говорящий о том, что коммутатор действительно включил интерфейс. Коммутаторы (и маршрутизаторы) генерируют сообщения системного журнала в ответ на различные события, и эти сообщения появляются на консоли. Настройка коммутатора для получения IP-адреса по DHCP Коммутатор также может использовать протокол Dynamic Host Configuration Protocol (DHCP)для динамического назначения параметров IPv4-адресации. В принципе, все, что вам нужно сделать, это сказать коммутатору использовать DHCP на интерфейсе и включить интерфейс. Предполагая, что DHCP работает в этой сети, коммутатор автоматически получит все его настройки. Следующие этапы показывают команды для настройки коммутатора, используя в качестве примера интерфейс VLAN 1. Войдите в режим конфигурации VLAN 1 с помощью команды глобальной конфигурации interface vlan 1 и включите интерфейс с помощью команды no shutdown по мере необходимости. Назначьте IP-адрес и маску с помощью подкоманды ip address dhcp. Пример настройки IP-адресации коммутатора по DHCP Проверка настроек IPv4 - адресации на коммутаторе Настройку IPv4 адресацию коммутатора можно проверить несколькими способами. Во-первых, вы всегда можете посмотреть текущую конфигурацию с помощью команды show running-config. Во-вторых, вы можете посмотреть информацию об IP-адресе и маске с помощью команды show interfaces vlan x, которая показывает подробную информацию о состоянии интерфейса VLAN в VLAN x. Наконец, если используется DHCP, используйте команду show dhcp lease, чтобы увидеть (временно) арендованный IP-адрес и другие параметры. (Обратите внимание, что коммутатор не хранит полученные настройки IP-адресации по DHCP в файле running-config.) Ниже показан пример выходных данных вышеприведенных команд. Выходные данные команды show interfaces vlan 1 отображают две очень важные детали, связанные с IP-адресацией коммутатора. Во-первых, команда show выводит список состояния интерфейса VLAN 1-в данном случае "up/up." Если интерфейс VLAN 1 выключен, тогда коммутатор не сможет отправлять пакеты через этот интерфейс. Примечательно, что если вы забудете выполнить команду no shutdown, интерфейс VLAN 1 останется в состоянии выключен и будет указан как " administratively down " в выводе команды show. Во-вторых, обратите внимание, что выходные данные содержат IP-адрес интерфейса в третьей строке. Если вы вручную настроите IP-адрес, то он всегда будет отображаться; однако, если вы используете DHCP и DHCP не работает, то команда show interfaces vlan x не будет выводить IP-адрес на экран. Если же DHCP работает, то вы увидите IP-адрес после использования команды show interfaces vlan 1. Хотите почитать про базовую настройку коммутаторов? По ссылкам доступны первая и вторая части статьи
img
Хэй! Поговорим про WinSCP. Это тонкий клиент под Windows, который предназначен SFTP (SSH File Transfer Protocol), FTP и SCP подключения к нужным хостам. Если говорить кратко, то этот софт предназначен для безопасного копирования файлов между сервером, к которому вы подключены и вашим компьютерам. Это очень удобно, когда вы подключаетесь к Linux машине и хотите скачать оттуда какие - либо файлы. Согласитесь, сделать это через консоль (CLI) будет очень трудно. Давайте посмотрим, как скачать WinSCP и выполнить установку и дальнейшее подключение. Матчасть! SCP происходит от английского secure copy - это тулза и по совместительству протокол копирования. Нужна для безопасного и удаленного копирования файлов. Безопасно, потому, что в качестве транспорта SCP использует протокол SSH. Скачать WinSCP Первым делом нужно загрузить ПО. Кликайте на ссылку ниже, чтобы скачать WinSCP: Скачать WinSCP Как только вкладка откроется, внизу вы найдете зеленую кнопку с надписью в формате "Download WinSCP 5.17.7 (10.6 MB)". Сразу после этого начнется загрузка. Установка WinSCP Кликаем на инсталлятор. В первом меню нажимаем "Принять" (прочтите лицензионное соглашение): Рекомендуемой установки вам хватит более чем. Нажимаем "Далее" Стиль интерфейса юзера. Выбирайте "Коммандер" и нажмите "Далее": Финальный экран. Нажимайте "Установить": По окончанию установки оставьте флажок "Запустить WinSCP": Запуск и работа в WinSCP Мы скачали и установили утилиту WinSCP, а теперь запустим и покажем, как подключиться к серверу. Пусть по легенде у нас будет машина с CentOS, с которой нам нужно вытянуть определенные файлы. Открываем консоль WinSCP и указываем: Протокол передачи: SFTP Имя хоста: 192.168.0.13 Порт: 22 Имя пользователя: root Пароль: ваш_пароль И нажимаем "Войти". Подключаемся и готово - теперь из правой рабочей области (зоны сервера) вы можете переключаться по каталогам в удобной графической форме и просто перетаскивать нужный файл как с сервера, так и на сервер.
img
Сеть 5G появилась относительно недавно, но ученые сейчас во всю проводят исследования над технологией 6G! Что такое 6G? Что можно от него ждать? Давайте обсудим. Концепция 6G 6G – стандарт мобильной связи шестого поколения, является концептуальной технологией мобильной связи беспроводной сети, также известной как технология мобильной связи шестого поколения. Сеть 6G станет технологией с интегрированной наземной беспроводной и спутниковой связью. Благодаря интеграции спутниковой связи в мобильную связь 6G, для обеспечения непрерывного глобального покрытия, сетевые сигналы могут достигать любой удаленной деревни. Кроме того, благодаря глобальной спутниковой системе определения местоположения, телекоммуникационной спутниковой системе, спутниковой системе получения изображений Земли и наземной сети 6G, полный охват земли и воздуха также может помочь людям прогнозировать погоду и быстро реагировать на стихийные бедствия. Разработка 6G В 2018 году Финляндия начала исследовать технологии, связанные с 6G. 9 марта 2018 года министр промышленности и информационных технологий Китайской Народной Республики сообщил, что Китай уже начал исследования 6G. 15 марта 2019 года Федеральная комиссия по связи США (FCC) единогласно проголосовала за принятие решения об открытии спектра «ТГц-волна» для услуг 6G. С 24 по 26 марта 2019 года в Лапландии, Финляндия, состоялась международная конференция по 6G. 20 ноября 2019 года Всемирная конференция 5G 2019 года была проинформирована о том, что China Unicom и China Telecom начали исследование технологий, связанных с 6G. Какие технологии понадобятся для реализации 6G? Терагерцовая технология 6G будет использовать терагерцовый (ТГц) частотный диапазон, и «уплотнение» сетей 6G достигнет беспрецедентного уровня. К тому времени наше окружение будет заполнено небольшими базовыми станциями. Терагерцовая полоса относится к 100 ГГц-10 ТГц, которая является полосой частот, намного превышающей 5 ГГц. От связи 1G (0,9 ГГц) до 4G (выше 1,8 ГГц) частота используемых нами беспроводных электромагнитных волн возрастает. Поскольку чем выше частота, тем больше допустимый диапазон пропускной способности и тем больше объем данных, которые могут быть переданы в единицу времени, что мы обычно просто говорим, что «скорость сети стала быстрее». Итак, когда речь заходит о «уплотнении» сети в эпоху 6G, значит ли это что нас окружат маленькие базовые станции? Вообще говоря, существует множество факторов, которые влияют на покрытие базовой станции, таких как частота сигнала, мощность передачи базовой станции, высота базовой станции и высота мобильного терминала. С точки зрения частоты сигнала, чем выше частота, тем короче длина волны и дифракционная способность сигнала. Частота сигнала 6G уже находится на уровне терагерца, и эта частота близка к спектру энергетического уровня вращения молекулы, и она легко поглощается молекулами воды в воздухе, поэтому расстояние, пройденное в космосе, не так далеко от 5G, поэтому для «ретрансляции» 6G требуется больше базовых станций. Диапазон частот, используемый 5G, выше, чем 4G. Без учета других факторов покрытие базовых станций 5G, естественно, меньше, чем покрытие 4G. При более высокой полосе частот 6G охват базовых станций будет меньше. Технология пространственного мультиплексирования 6G будет использовать «технологию пространственного мультиплексирования», базовые станции 6G смогут одновременно получать доступ к сотням или даже тысячам беспроводных соединений, а его пропускная способность будет в 1000 раз превышать пропускную способность базовых станций 5G. Когда частота сигнала превышает 10 ГГц, его основной режим распространения больше не является дифракционным. Для линий распространения вне прямой видимости отражение и рассеяние являются основными методами распространения сигнала. В то же время, чем выше частота, тем больше потери при распространении, тем короче расстояние покрытия и слабее дифракционная способность. Эти факторы значительно увеличат сложность покрытия сигнала. 5G решает эти проблемы с помощью двух ключевых технологий, Massive MIMO и лучевого формирования. 6G расположен в более высокой полосе частот, и дальнейшее развитие MIMO, вероятно, обеспечит ключевую техническую поддержку для 6G. Как будет выглядеть мир 6G? Итак, когда технология 6G будет полностью развернута, как будет выглядеть мир? Можно предположить, что скорость сети будет быстрее и стабильнее. Предполагается, что в сети 6G загрузка фильмов в несколько ГБ может занять всего пару секунд на скорости в 1 Тбит/с. Конечно, помимо того, что он быстрее 5G, он также будет в полной мере применяться в других развивающихся отраслях благодаря быстрому развитию сети. Например, умные города смогут в режиме реального времени передавать условия дорожного движения и решать проблемы пробок. Такие технологии, как AR, также станут реальностью. Соответствующие исследования предсказывают, что в более позднюю часть эры 5G плотность сетевых подключений, создаваемых устройствами, превысит теоретический предел технологии 5G. Таким образом, ранняя стадия применения 6G заключается в расширении и углублении технологии 5G. Исходя из этого, 6G будет основываться на искусственном интеллекте, периферийных вычислениях и Интернете вещей для достижения глубокой интеграции интеллектуальных приложений и сетей, а затем для разработки виртуальной реальности, виртуальных пользователей, интеллектуальных сетей и других функций. И, хотя отрасль возлагает большие надежды и предположения на 6G, следует признать, что исследования 6G действительно все еще находятся в зачаточном состоянии, и вся отрасль все еще находится в процессе непрерывного развития.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59