По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Поговорим сегодня про Cisco SVI – Switch VLAN Interface и о том, как его настроить. Для начала вспомним основы – для связи между оконечными устройствами в локальной сети (LAN) требуется коммутаторы, а для связи между различными локальными сетями требуется маршрутизатор. VLAN 2 уровня также создает новый широковещательный домен, то есть если отправить бродкаст в этой подсети – все устройства, подключенные к этому VLAN’у получат его (не важно, к какому или каким коммутаторам они подключены). Причем все устройства в этом VLAN’е могут общаться между собой без какого-либо устройства 3 уровня. Однако, если требуется связаться с другим VLAN’ом, то будет необходима маршрутизация в том или ином виде. Для сегментации и связи между VLAN’ами необходим либо маршрутизатор, либо коммутатор 3 уровня. Если мы используем роутер для сегментации, то это означает, что каждый интерфейс на маршрутизаторе являет собой отдельный широковещательный домен, то есть отдельный сегмент. В случае использования коммутатора 3 уровня, мы предварительно создаем несколько обычных VLAN’ов на коммутаторе, то есть несколько широковещательных доменов. Затем для каждого VLAN’а необходимо создать соответствующий интерфейс на коммутаторе, который будет отвечать за маршрутизацию. Этот интерфейс и есть SVI. Таким образом, порядок действий следующий – создается обычный VLAN, и затем назначается сетевой адрес на этом VLAN’е. Главная особенность в том, что SVI – виртуальный интерфейс, то есть все клиенты в данном VLAN’е будут использовать SVI как шлюз по умолчанию. По умолчанию, SVI создан на свитчах Cisco 3 уровня на VLAN 1 для целей управления устройством. Настройка Итак, схема ниже: А теперь мы покажем пример настройки двух SVI на коммутаторе 3 уровня, в соответствии со схемой выше. Сначала – VLAN 10: MERION-SW(config)#vlan 10 MERION-SW(config)#interface vlan 10 MERION-SW(config-if)#description WORKSTATIONS MERION-SW(config-if)#ip address 10.0.0.1 255.255.255.0 Мы создали VLAN, назначили сетевой адрес и поставили описание. Теперь повторим тоже самое для VLAN 20: MERION-SW(config)#vlan 20 MERION-SW(config)#interface vlan 20 MERION-SW(config-if)#description SERVERS MERION-SW(config-if)#ip address 10.0.1.1 255.255.255.0 Еще раз – зачем это все нужно? Вы спросите, зачем это нужно и почему бы не использовать вариант с физическими интерфейсами маршрутизатора или «роутер-на-палке» (router on a stick)? Использовать SVI проще и чаще всего дешевле – банально поэтому. Кроме того, использование SVI на коммутаторе 3 уровня также является более эффективным с точки зрения сходимости и управления – так как весь функционал 2 и 3 уровня управляется на одном коммутаторе 3 уровня.
img
Привет! В сегодняшней статье хотим рассказать о том, как настроить DHCP сервер для организации офисной IP-телефонии. Этой темы мы уже косвенно касались в нашей прошлой статье, а сегодня покажем всё на практике. Мы будем использовать роутер MikroTik RB951Ui-2HnD с операционной системой MikroTik RouterOS 6.35.4, но для этих целей подойдёт абсолютно любое устройство, поддерживающее данный сервис. /p> Настройка DHCP Итак, открываем WinBox и подключаемся к нашему роутеру, далее переходим во вкладку IP → Pool → +: Открывается следующее окно: Обозначим диапазон IP адресов, которые будем раздавать подключаемым телефонам, например, 192.168.1.10 – 192.168.1.100. Теперь настроим непосредственно DHCP-сервер, который будет раздавать адреса из созданного пула телефонам, для этого переходим по пути IP → DHCP Server → DHCP → +: Открывается следующее окно: В данном окне необходимо указать интерфейс, с которого наш сервер будет раздавать адреса (в нашем случае – ether1), Lease Time - время, на которое будет выдан адрес (в нашем случае – 1 день) и, собственно, пул адресов (Address Pool), которые могут быть выданы (в нашем случае – dhcp, который мы создали ранее) Option 66 А теперь самое важное, для чего, всё это затевалось - Опция 66. Опция 66 (option 66) – это аналог проприетарной опции 150 (option 150), разработанной компанией Cisco для автоматического обновления прошивок и конфигурации (Auto Provisioning) телефонов Cisco IP Phone. Данная опция содержит в себе адрес TFTP сервера, на который должен обратиться телефон, чтобы скачать прошивку и файл с конфигурацией, как только подключается к сети. Единственным различием между опцией 150 и 66, является то, что благодаря опции 150 можно указывать IP адреса для нескольких TFTP серверов, а в опции 66 можно указать только один адрес. Опция 66 является открытым стандартом IEEE, который поддерживается большинством производителей роутеров и VoIP-оборудования. Описывается в RFC 2132. Давайте её настроим, для этого переходим на вкладку Options → + и видим следующее окно: Важно! Прежде чем вводить IP адрес TFTP сервера в поле Value, проверьте версию RouterOS, от этого будет зависеть синтаксис данной настройки. Для версий с 6.0 -6.7, значение IP адреса нужно вводить, используя одинарные ковычки - ’192.168.1.1’ Для версий от 6.8, значение IP адреса нужно вводить, используя следующий синтаксис - s’192.168.1.1’ Здесь: Name - Название новой опции Code - Код опции по RFC 2132 Value - IP адрес TFTP сервера, на котором лежат прошивки для телефонов Raw Value - 16-ричная интерпретация IP адреса TFTP сервера, рассчитывается автоматически после нажатия кнопки Apply Готово, теперь переходим на вкладку Network и указываем только что настроенную опцию 66 как показано ниже: Итак, теперь, как только мы подключим новый телефон в сеть, он получит по DHCP адрес из пула 192.168.1.10- 100, а также адрес TFTP сервера в опции 66, на котором для него лежит конфигурационный файл и актуальная версия прошивки.
img
Почитайте предыдущую статью про криптографический обмен ключами. Предположим, вы хотите отправить большой текстовый файл или даже изображение, и позволить получателям подтвердить, что он исходит именно от вас. Что делать, если рассматриваемые данные очень большие? Или что, если данные нужно сжать для эффективной передачи? Существует естественный конфликт между криптографическими алгоритмами и сжатием. Криптографические алгоритмы пытаются произвести максимально случайный вывод, а алгоритмы сжатия пытаются воспользоваться преимуществом неслучайности данных для сжатия данных до меньшего размера. Или, возможно, вы хотите, чтобы информация была прочитана кем-либо, кто хочет ее прочитать, что означает, что не нужно ее шифровать, но вы хотите, чтобы получатели могли проверить, что вы ее передали. Криптографические хэши предназначены для решения этих проблем. Возможно, вы уже заметили по крайней мере одно сходство между идеей хеширования и криптографического алгоритма. В частности, хэш предназначен для получения очень большого фрагмента данных и создания представления фиксированной длины, поэтому на выходе для широкого диапазона входных данных очень мало конфликтов. Это очень похоже на концепцию максимально близкого к случайному выходу для любого ввода, необходимого для криптографического алгоритма. Еще одно сходство, о котором стоит упомянуть, заключается в том, что хэш-алгоритмы и криптографические алгоритмы работают лучше с очень редко заполненным входным пространством. Криптографический хеш просто заменяет обычную хеш-функцию криптографической функцией. В этом случае хэш может быть вычислен и отправлен вместе с данными. Криптографические хэши могут использоваться либо с системами с симметричными ключами, либо с системами с открытым ключом, но обычно они используются с системами с открытым ключом. Сокрытие информации о пользователе Возвращаясь к начальным статьям, еще одна проблема безопасности - это исчерпание данных. В случае отдельных пользователей исчерпание данных можно использовать для отслеживания того, что пользователи делают, пока они находятся в сети (а не только для процессов). Например: Если вы всегда носите с собой сотовый телефон, можно отслеживать перемещение Media Access Control (MAC), когда он перемещается между точками беспроводного подключения, чтобы отслеживать ваши физические перемещения. Поскольку большинство потоков данных не симметричны - данные проходят через большие пакеты, а подтверждения передаются через небольшие пакеты, наблюдатель может обнаружить, когда вы выгружаете и скачиваете данные, и, возможно, даже когда вы выполняете небольшие транзакции. В сочетании с целевым сервером эта информация может дать хорошую информацию о вашем поведении как пользователя в конкретной ситуации или с течением времени. Этот и многие другие виды анализа трафика могут выполняться даже для зашифрованного трафика. Когда вы переходите с веб-сайта на веб-сайт, наблюдатель может отслеживать, сколько времени вы тратите на каждый из них, что вы нажимаете, как вы перешли на следующий сайт, что вы искали, какие сайты вы открываете в любое время и т. д. информация может многое рассказать о вас как о личности, о том, чего вы пытаетесь достичь, и о других личных факторах. Рандомизация MAC-адресов Institute of Electrical and Electronic Engineers (IEEE) первоначально разработал адресное пространство MAC-48 для назначения производителями сетевых интерфейсов. Эти адреса затем будут использоваться "как есть" производителями сетевого оборудования, поэтому каждая часть оборудования будет иметь фиксированный, неизменный аппаратный адрес. Этот процесс был разработан задолго до того, как сотовые телефоны появились на горизонте, и до того, как конфиденциальность стала проблемой. В современном мире это означает, что за одним устройством можно следить независимо от того, где оно подключено к сети. Многие пользователи считают это неприемлемым, особенно потому, что не только провайдер может отслеживать эту информацию, но и любой, кто имеет возможность прослушивать беспроводной сигнал. Один из способов решить эту проблему-позволить устройству регулярно менять свой MAC-адрес, даже, возможно, используя другой MAC-адрес в каждом пакете. Поскольку сторонний пользователь (прослушиватель) вне сети провайдера не может "угадать" следующий MAC-адрес, который будет использоваться любым устройством, он не может отслеживать конкретное устройство. Устройство, использующее рандомизацию MAC-адресов, также будет использовать другой MAC-адрес в каждой сети, к которой оно присоединяется, поэтому оно не будет отслеживаться в нескольких сетях. Существуют атаки на рандомизацию MAC-адресов, в основном сосредоточенные вокруг аутентификации пользователя для использования сети. Большинство систем аутентификации полагаются на MAC-адрес, поскольку он запрограммирован в устройстве, чтобы идентифицировать устройство и, в свою очередь, пользователя. Как только MAC-адрес больше не является неизменным идентификатором, должно быть какое-то другое решение. Места, где рандомизация MAC-адресов может быть атакована, - это Время (timing): если устройство собирается изменить свой MAC-адрес, оно должно каким-то образом сообщить другому абоненту беспроводного соединения об этих изменениях, чтобы канал между подключенным устройством и базовой станцией мог оставаться жизнеспособным. Должна быть какая-то согласованная система синхронизации, чтобы изменяющийся MAC-адрес мог продолжать обмен данными при изменении. Если злоумышленник может определить, когда произойдет это изменение, он сможет посмотреть в нужное время и обнаружить новый MAC-адрес, который принимает устройство. Порядковые номера (Sequence numbers): как и во всех транспортных системах, должен быть какой-то способ определить, все ли пакеты были получены или отброшены. Злоумышленник может отслеживать порядковые номера, используемые для отслеживания доставки и подтверждения пакетов. В сочетании с только что отмеченной атакой по времени это может обеспечить довольно точную идентификацию конкретного устройства при изменении MAC-адреса. Отпечатки информационных элементов (Information element fingerprints): каждое мобильное устройство имеет набор поддерживаемых функций, таких как установленные браузеры, расширения, приложения и дополнительное оборудование. Поскольку каждый пользователь уникален, набор приложений, которые он использует, также, вероятно, будет довольно уникальным, создавая "отпечаток" возможностей, которые будут сообщаться через информационный элемент в ответ на зонды от базовой станции. Отпечатки идентификатора набора услуг (SSID): каждое устройство хранит список сетей, к которым оно может подключиться в настоящее время, и (потенциально) сетей, которые оно могло достичь в какой-то момент в прошлом. Этот список, вероятно, будет довольно уникальным и, следовательно, может выступать в качестве идентификатора устройства. Хотя каждый из этих элементов может обеспечить определенный уровень уникальности на уровне устройства, комбинация этих элементов может быть очень близка к идентификации конкретного устройства достаточно часто, чтобы быть практически полезной при отслеживании любого конкретного пользователя, подключающегося к беспроводной сети. Это не означает, что рандомизация MAC-адресов бесполезна, это скорее один шаг в сохранении конфиденциальности пользователя при подключении к беспроводной сети. Луковая маршрутизация Луковая маршрутизация - это механизм, используемый для маскировки пути, а также шифрования пользовательского трафика, проходящего через сеть. Рисунок 1 используется для демонстрации. На рисунке 1 хост А хочет безопасно отправить некоторый трафик на K, чтобы ни один другой узел в сети не мог видеть соединение между хостом и сервером, и чтобы ни один злоумышленник не мог видеть открытый текст. Чтобы выполнить это с помощью луковой маршрутизации, A выполняет следующие действия: Он использует службу для поиска набора узлов, которые могут соединяться между собой, и предоставления пути к серверу K. Предположим, что этот набор узлов включает [B, D, G], хотя на рисунке они показаны как маршрутизаторы, скорее всего, это программные маршрутизаторы, работающие на хостах, а не выделенные сетевые устройства. Хост A сначала найдет открытый ключ B и использует эту информацию для создания сеанса с шифрованием с симметричным ключом B. Как только этот сеанс установлен, A затем найдет открытый ключ D и использует эту информацию для обмена набором симметричных ключей с D, наконец, построит сеанс с D, используя этот симметричный секретный ключ для шифрования защищенного канала. Важно отметить, что с точки зрения D, это сеанс с B, а не с A. Хост A просто инструктирует B выполнить эти действия от его имени, а не выполнять их напрямую. Это означает, что D не знает, что A является отправителем трафика, он знает только, что трафик исходит от B и передается оттуда по зашифрованному каналу. Как только этот сеанс будет установлен, A затем проинструктирует D настроить сеанс с G таким же образом, как он проинструктировал B настроить сеанс с D. D теперь знает, что пункт назначения-G, но не знает, куда будет направлен трафик G. У хоста A теперь есть безопасный путь к K со следующими свойствами: Трафик между каждой парой узлов на пути шифруется с помощью другого симметричного закрытого ключа. Злоумышленник, который разрывает соединение между одной парой узлов на пути, по-прежнему не может наблюдать трафик, передаваемый между узлами в другом месте на пути. Выходной узел, которым является G, знает пункт назначения, но не знает источник трафика. Входной узел, которым является B, знает источник трафика, но не пункт назначения. В такой сети только А знает полный путь между собой и местом назначения. Промежуточные узлы даже не знают, сколько узлов находится в пути-они знают о предыдущем и следующем узлах. Основная форма атаки на такую систему состоит в том, чтобы захватить как можно больше выходных узлов, чтобы вы могли наблюдать трафик, выходящий из всей сети, и соотносить его обратно в полный поток информации. Атака "Человек посередине" (Man-in-the-Middle) Любой вид безопасности должен не только изучать, как вы можете защитить информацию, но также учитывать различные способы, которыми вы можете вызвать сбой защиты данных. Поскольку ни одна система не является идеальной, всегда найдется способ успешно атаковать систему. Если вам известны виды атак, которые могут быть успешно запущены против системы безопасной передачи данных, вы можете попытаться спроектировать сеть и среду таким образом, чтобы предотвратить использование этих атак. Атаки "человек посередине" (MitM) достаточно распространены, и их стоит рассмотреть более подробно. Рисунок 2 демонстрирует это. Рисунок 2-б аналогичен рисунку 2-а с одним дополнением: между хостом A и сервером C расположен хост B, который хочет начать зашифрованный сеанс. Некоторыми способами, либо подменяя IP-адрес C, либо изменяя записи службы доменных имен (DNS), чтобы имя C преобразовывалось в адрес B, или, возможно, даже изменяя систему маршрутизации, чтобы трафик, который должен быть доставлен в C, вместо этого доставлялся в B, злоумышленник заставил B принять трафик, исходящий из A и предназначенный для C. На рисунке 2-б: Хост A отправляет полуслучайное число, называемое одноразовым номером, в C. Эту информацию получает B. Хост B, который злоумышленник использует в качестве MitM, передает этот одноразовый номер на узел C таким образом, что создается впечатление, что пакет действительно исходит от узла A. В этот момент злоумышленник знает одноразовый идентификатор, зашифрованный A. Злоумышленник не знает закрытый ключ A, но имеет доступ ко всему, что A отправляет зашифрованным с помощью закрытого ключа A. Сервер C также отправляет ответ с зашифрованным одноразовым случайным числом. B получает это и записывает. Хост B передает одноразовое случайное число, полученное от C, на A. Хост A по-прежнему будет считать, что этот пакет пришел непосредственно от C. Хост B вычисляет закрытый ключ с помощью A, как если бы это был C. Хост B вычисляет закрытый ключ с помощью C, как если бы это был A. Любой трафик, который A отправляет в C, будет получен B, что: Расшифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 5 на рисунке 2-б. Зашифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 6 на рисунке 2-б, и передайте их C. Во время этого процесса злоумышленник на B имеет доступ ко всему потоку в виде открытого текста между A и C. Ни A, ни C не осознают, что они оба построили зашифрованный сеанс с B, а не друг с другом. Такого рода атаки MitM очень сложно предотвратить и обнаружить.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59