По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
У каждого из нас, наверное, есть родственник (бабушка, брат, племянник или еще кто-то), который говорил так быстро, что вы не могли понять слова, которое он говорил? Некоторые компьютерные программы тоже "говорят" слишком быстро. Рисунок 1 иллюстрирует это. На рисунке: В момент времени 1 (T1) отправитель передает около четырех пакетов на каждые три, которые может обработать приемник. Приемник имеет пяти-пакетный буфер для хранения необработанной информации; в этом буфере находятся два пакета. В момент времени Т2 отправитель передал четыре пакета, а получатель обработал три; буфер в приемнике теперь содержит три пакета. На этапе T3 отправитель передал четыре пакета, а получатель обработал три; буфер в приемнике теперь содержит четыре пакета. На этапе T4 отправитель передал четыре пакета, а получатель обработал три; буфер в приемнике теперь содержит пять пакетов. Следующий переданный пакет будет отброшен получателем, потому что в буфере нет места для его хранения, пока получатель обрабатывает пакеты, чтобы их можно было удалить. Что необходимо, так это своего рода петля обратной связи, чтобы сказать передатчику замедлить скорость, с которой он посылает пакеты, как показано на рисунке 3. Этот тип обратной связи требует либо неявной сигнализации, либо явной сигнализации между приемником и передатчиком. Неявная передача сигналов используется более широко. При неявной сигнализации передатчик предполагает, что пакет не был принят на основании некоторых наблюдений о потоке трафика. Например, получатель может подтвердить получение некоторого более позднего пакета, или получатель может просто не подтвердить получение определенного пакета, или получатель может не отправлять что-либо в течение длительного периода времени (в терминах сети). При явной сигнализации получатель каким-то образом напрямую сообщает отправителю, что определенный пакет не был получен. Windowing Windowing в сочетании с неявной передачей сигналов, безусловно, является наиболее широко используемым механизмом управления потоками в реальных сетях. Windowing по существу состоит из следующего: Передатчик отправляет некоторое количество информации получателю. Передатчик ждет, прежде чем решить, правильно ли была получена информация или нет. Если получатель подтверждает получение в течение определенного периода времени, передатчик отправляет новую информацию. Если получатель не подтверждает получение в течение определенного периода времени, передатчик повторно отправляет информацию. Неявная сигнализация обычно используется с Windowing протоколами, просто не подтверждая получение конкретного пакета. Явная сигнализация иногда используется, когда получатель знает, что он сбросил пакет, когда полученные данные содержат ошибки, данные получены не по порядку или данные иным образом повреждены каким-либо образом. Рисунок 3 иллюстрирует простейшую Windowing схему-окно с одним пакетом. В одиночном окне пакета (также иногда называемом ping pong) передатчик отправляет пакет только тогда, когда получатель подтвердил (показанный на рисунке как ack) получение последнего переданного пакета. Если пакет не получен, получатель не подтвердит его. При отправке пакета отправитель устанавливает таймер, обычно называемый таймером повторной передачи; как только этот таймер активируется (или истекает), отправитель предполагает, что получатель не получил пакет, и отправляет его повторно. Как долго должен ждать отправитель? Существует несколько возможных ответов на этот вопрос, но по существу отправитель может либо ждать фиксированное количество времени, либо установить таймер на основе информации, полученной из предыдущих передач и условий сети. Простой (и наивной) схемой было бы Измерьте промежуток времени между отправкой пакета и получением подтверждения, называемый временем обратного пути (RTT- Round Trip Time, хотя обычно пишется в нижнем регистре, поэтому rtt). Установите таймер повторной передачи на это число плюс небольшое количество времени буфера, чтобы учесть любую изменчивость в RTT на протяжении нескольких передач. Кроме того, получатель может получить две копии одной и той же информации: A передает пакет и устанавливает таймер его повторной передачи B получает пакет, но Не может подтвердить получение, потому что он находится вне памяти или испытывает высокую загрузку процессора или какое-то другое состояние. Отправляет подтверждение, но оно отбрасывается сетевым устройством. Таймер повторной передачи в точке A истекает, поэтому отправитель передает другую копию пакета. B получает эту вторую копию той же информации Как получатель может обнаружить дублированные данные? Для получателя представляется возможным сравнить полученные пакеты, чтобы увидеть, есть ли дублирующаяся информация, но это не всегда будет работать - возможно, отправитель намеревался отправить одну и ту же информацию дважды. Обычный метод обнаружения дублирующейся информации заключается в включении некоторого вида порядкового номера в передаваемые пакеты. Каждому пакету присваивается уникальный порядковый номер при его создании отправителем; если получатель получает два пакета с одинаковым порядковым номером, он предполагает, что данные дублированы, и отбрасывает копии. Окно размером 1, или ping pong, требует одного кругового перехода между отправителем и получателем для каждого набора передаваемых данных. Это, как правило, приводит к очень низкой скорости передачи. Если рассматривать сеть, как о сквозном железнодорожном пути, а каждый пакет-как об одном вагоне поезда, то наиболее эффективное использование пути и самая быстрая скорость передачи данных будут тогда, когда путь всегда полон. Это физически невозможно, однако, в случае сети, потому что сеть используется многими наборами отправителей и получателей, и всегда есть сетевые условия, которые помешают использованию сети достичь 100%. Существует некоторый баланс между повышением эффективности и скорости отправки более одного пакета за один раз, а также мультиплексированием и "безопасностью" отправки меньшего количества пакетов за один раз (например, одного). Если правильная точка баланса может быть вычислена каким-то образом, схема управления потоком с фиксированным окном может хорошо работать. Рисунок 4 иллюстрирует это. На рисунке 4, предполагаемое фиксированное окно с тремя пакетами: При T1, T2 и T3 A передает пакеты; A не нужно ждать, пока B что-либо подтвердит, чтобы отправить эти три пакета, так как размер окна установлен на 3. В момент T4 B подтверждает эти три пакета, что позволяет A передать другой пакет. При T5 B подтверждает этот новый пакет, даже если это только один пакет. B не нужно ждать, пока A передаст еще три пакета, чтобы подтвердить один пакет. Это подтверждение позволяет A иметь достаточный бюджет для отправки еще трех пакетов. При T5, T6 и T7 A отправляет еще три пакета, заполняя свое окно. Теперь он должен ждать, пока B не подтвердит эти три пакета, чтобы отправить больше информации. На этапе T8 B подтверждает получение этих трех пакетов. В схемах управления окнами, где размер окна больше одного, существует четыре вида подтверждений, которые приемник может отправить передатчику: Положительное подтверждение: приемник подтверждает получение каждого пакета в отдельности. Например, если порядковые номера 1, 3, 4 и 5 были получены, приемник подтвердит получение этих конкретных пакетов. Отправитель может сделать вывод, какие пакеты не получил приемник, отметив, какие порядковые номера не были подтверждены. Отрицательное подтверждение: приемник отправляет отрицательное ack для пакетов, которые, по его мнению, отсутствуют или были повреждены при получении. Например, если порядковые номера 1, 3, 4 и 5 были получены, приемник может сделать вывод, что порядковый номер 2 отсутствует, и отправить отрицательное ack для этого пакета. Выборочное подтверждение: по сути, это сочетание положительного и отрицательного подтверждения, как указано выше; приемник отправляет как положительные, так и отрицательные подтверждения для каждой последовательности полученной информации. Кумулятивное подтверждение: подтверждение получения порядкового номера подразумевает получение всей информации с более низкими порядковыми номерами. Например, если порядковый номер 10 подтвержден, подразумевается информация, содержащаяся в порядковых номерах 19, а также информация, содержащаяся в порядковом номере 10 Третий оконный механизм называется управлением потоком скользящего окна. Этот механизм очень похож на фиксированный механизм управления потоком окон, за исключением того, что размер окна не является фиксированным. При управлении потоком со скользящим окном передатчик может динамически изменять размер окна при изменении сетевых условий. Приемник не знает, какого размера окно, только то, что отправитель передает пакеты, и время от времени приемник подтверждает некоторые или все из них, используя один из механизмов подтверждения, описанных в предыдущем списке. Механизмы скользящих окон добавляют еще один интересный вопрос к вопросам, уже рассмотренным в других механизмах управления окнами: какого размера должно быть окно? Простое решение позволяет просто вычислить rtt и установить размер окна, кратный rtt. Были предложены более сложные решения; Negotiated Bit Rates (Согласование Bit Rates) Другое решение, которое чаще используется в сетях с коммутацией каналов, а не в сетях с коммутацией пакетов, заключается в том, чтобы отправитель, получатель и сеть согласовывали скорость передачи битов для любого конкретного потока. Широкий спектр возможных скоростей передачи данных был разработан для ряда различных сетевых технологий. Возможно, "наиболее полный набор" предназначен для асинхронного режима передачи данных (ATM)-но данные сети ATM вы скорее всего найдете в ближайшем Музее истории сетей, потому что ATM редко развертывается в производственных сетях. Битовые скорости ATM являются: Постоянная скорость передачи (Constant Bit Rate -CBR): отправитель будет передавать пакеты (или информацию) с постоянной скоростью; следовательно, сеть может планировать с учетом этой постоянной нагрузки на полосу пропускания, а приемник может планировать с учетом этой постоянной скорости передачи данных. Этот битрейт обычно используется для приложений, требующих синхронизации времени между отправителем и получателем. Переменная скорость передачи (Variable Bit Rate -VBR): отправитель будет передавать трафик с переменной скоростью. Эта скорость обычно согласовывается с несколькими другими частями информации о потоке, которые помогают сети и получателю планировать ресурсы, включая: Пиковая скорость или максимальная скорость передачи пакетов в секунду, которую планирует передать отправитель Устойчивая скорость или скорость, с которой отправитель планирует передавать данные в обычном режиме Максимальный размер пакета или наибольшее количество пакетов, которые отправитель намеревается передать за очень короткий промежуток времени Доступная скорость передачи (Available Bit Rate -ABR): отправитель намеревается полагаться на способность сети доставлять трафик с максимальной отдачей, используя некоторую другую форму управления потоком, такую как метод скользящего окна, для предотвращения переполнения буфера и настроить передаваемый трафик на доступную полосу пропускания.
img
Хеширование находит широкое применение не только для аутентификации юзера в системе, но также и для проверки целостности файлов. Если у вас имеется контрольная сумма, вы можете сравнить ее с контрольной суммой имеющегося файла, убедившись таким образом в его подлинности. Способных вычислять хэш файлов программ существует более чем достаточно, но не все они стоят внимания. Что, если имеющаяся у вас программа не поддерживает тот алгоритм, с помощью которого был получен хэш файла? Бесплатная программа GtkHash имеет в этом плане преимущество, поддерживая 23 разных алгоритма хэширования и отличаясь в то же время простотой и удобством использования. Процедура установки утилиты несколько отличается от процедуры инсталляции большинства других приложений. В процессе установки мастером будет открыто окно командной строки для автоматической установки фреймворка MinGW, кроме того, вам нужно будет закрыть окно установщика нажатием кнопки "Close". Настройка утилиты По умолчанию в GtkHash включена поддержка только четырех алгоритмов - MD5, SHA1, SHA256 и CRC32. Чтобы добавить другие алгоритмы, зайдите в параметры программы и отметьте галочками нужные вам пункты. Обратите внимание на опцию HMAC, она позволяет использовать секретные ключи (как в MacOS), но включать ее необязательно, равно как и менять формат дайджеста. После сохранения настройки в окне программы у вас появится дополнительные поля. Допустим, у вас есть некий файл и его контрольная сумма. Путь к файлу укажите в поле "Файл", контрольную сумму вставьте в поле "Сравнить" и нажмите "Хэш". В результате программой будут вычислены разные типы хэшей, причем совпавшие будут отмечены зеленым значком. Кстати, если вам нужно просто получить контрольную сумму объекта, поле сравнения можно вообще не заполнять. Хотелось бы также отметить, что утилитой поддерживается хэширования не только файлов, но и текста. Причем вычисление контрольной суммы производится в режиме реального времени. А еще инструментом можно вычислять хэши целой группы файлов, перетащив их на окно программы и нажав "Хэш". Правда, просматривать результаты работы программы в этом случае не очень удобно, так как данные выводятся длинной строкой. Поэтому будет лучше экспортировать данные в файл через меню "Save Digest File". Файл дайджеста не имеет расширения, но его содержимое без проблем можно просмотреть Notepad++ или другим текстовым редактором.
img
Как следует из названий, проприетарный протокол компании Cisco System EIGRP (Enhanced Interior Gateway Routing Protocol), это протокол «внутреннего шлюза». EIGRP имеет множество преимуществ по сравнению с протоколом RIP (Routing Information Protocol) и своим непосредственным предшественником, протоколом IGRP (Interior Gateway Routing Protocol). По существу, EIGRP это расширенная версия протокола IGRP. Как и RIP, IGRP известен как дистанционно – векторный протокол, но по сравнению с ним он имеет улучшенные характеристики алгоритма расчета оптимального пути до пункта назначения. Метрики IGRP основываются на таких параметрах как полоса пропускания и задержка, в тоже время для протокола RIP важным является длинна маршрута, выраженная в «хопах», то есть количестве узлов на пути следования. Протокол EIGRP включает в себя алгоритмы, которые часто встречаются в продвинутых протокол маршрутизации, которые работают по принципу «состояния канала». EIGRP использует оптимизированный по сравнению с RIP и IGRP метод предотвращения петель в сети, обеспечивая 100 – процентную гарантию отсутствия петель. Важное преимущество EIGRP – это высокий показатель масштабируемости и высокая скорость сходимости сети. Итак, давайте разберем конкретные преимущества EIGRP по сравнению с IGRP: Быстрая сходимость Поддержка CIDR (бесклассовая адресация) и VLSM (маска подсети переменной длины) Использует более совершенный алгоритм DUAL (Diffusing Update Algorithm), для определения качества того или иного маршрута. Может использовать маршруты других протоколов маршрутизации. Протокол совместим с IGRP и может выполнять маршрутизацию таких протоколов как IPX и Apple AppleTalk EIGRP представляется как гибридный протокол, который содержит в себе как функционал дистанционно – векторного протокола маршрутизации, так и «состояния канала». Перечислим следующие характеристики: EIGRP использует множество метрик для определения качества маршрута в добавок к «дистанции»: Полоса пропускания и задержка (метрики по умолчанию) Надежность, загрузка, MTU (опциональные метрики) Оценка качества маршрута с помощью DUAL2 EIGRP, как и протокол OSPF, отправляет сообщения об изменении маршрутизации только тогда, когда в сети случаются какие-либо изменения (для сравнения, RIP и IGRP обновляет широковещательные сообщения периодически) Протокол EIGRP в рамках сходимости, обменивается только «Hello» сообщениями с соседними маршрутизаторами. EIGRP не поддерживается на маршрутизаторах других компаний, кроме Cisco. EIGRP использует следующие административные значения для маршрутов: Значение 90, для маршрутов полученных по EIGRP Значение 170, для маршрутов полученных в рамках других протоколов маршрутизации Компоненты EIGRP Протокол EIGRP (Enhanced Interior Gateway Routing Protocol) состоит из 4 – х важных компонентов: Обнаружение соседей Речь пойдет о технологии, которую используют маршрутизаторы Cisco чтобы обнаружить присутствие напрямую подключенных маршрутизаторов соседей. Процесс обнаружения, позволяет маршрутизаторам использовать небольшие пакеты с маленькой нагрузкой, в рамках которых они передают сообщения «Hello». Отправка подобных пакетов позволяет определить, нормально ли функционирует сосед, или же он недоступен. Маршрутизатор отвечает на эти сообщения, и только после этого маршрутизаторы начинают работу. В случае не ответа, маршрутизатор считается неактивным и процесса коммуникаций не происходит. Reliable Transport Protocol (RTP) Или другими словами, надежный транспортный протокол. Обеспечивает надежную и гарантированную доставку юникаст или мультикаст сообщения соседям маршрутизаторам. В рамках эффективного использования RTP, маршрутизаторы используют его только по необходимости. DUAL алгоритм Алгоритм маршрутизации, который используется EIGRP для расчета, определения и отслеживания маршрутов без петель. DUAL использует метрики для определения наиболее оптимального маршрута основываясь на «feasible successor» (или «возможный приемник»,о котором мы расскажем во второй части статьи). Дополнительные модули протокола Независимые модули, которые используются протоколом EIGRP в рамках сетевого уровня модели OSI для отправки и получения сообщений. Модуль IP для протокола EIGRP носит название IP-EIGRP и предназначен для отправки и получения EIGRP пакетов инкапсулированных в IP – пакеты. IP-EIGRP взаимодействует с DUAL для вычисления маршрутов, которые в дальнейшем хранятся в таблицах маршрутизации. Во второй части статьи мы продолжим рассказ о таблицах маршрутизации EIGRP
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59