По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Отчетность. Важная штука, не правда ли? Особенно в крупном контакт - центре, где контроль за SLA и работой тысяч операторов является критическим бизнес - узлом. Ранее, мы рассказывали про UCCE. Это такой большой контакт - центр от Cisco для больших компаний. А сегодня мы поговорим Cisco Unified Intelligence Center (CUIC), как его еще называют “куик". Обзор возможностей, архитектура и термины продукта в статье. Зачем нужен? CUIC позволяет работать с историческими данными и данными реального времени. “Куик" можно установить по модели standalone, когда у вас будет только 1 сервер, или кластеризовать это решение, добавив в него до 8 серверов. В CUIC можно добавлять различные отчеты, в том числе кастомизированные, править отображение отчетов, делать его в формате диаграмм, чартов, делать “пермалинки" (ссылки по web на отчет), дашборды и многие другие функции. Архитектура С точки зрения высокоуровневой архитектуры, CUIC работает вот так: Итак, с точки зрения высокоуровневой архитектуры: Пользователь (супервайзер) через браузер делает обращение в CUIC для генерации отчета; Веб запрос обрабатывается web - сервером в кластере серверов Unified Intelligence Center; Данные “парсятся" черед Data source (датасорс, источник данных); Датасорс предоставляет отчеты реального времени или исторические с UCCE или CVP сервера отчетности; Кстати, подключить CUIC можно и к данным UCCX При подключении к UCCE (в CUIC есть отдельный пункт настройки Data Sources), мы указываем подключение серверу AWDB (Administrative Workstation DB). По факту, это просто SQL - плечо по 1433 порту (если не меняли). Как мы сказали ранее, по факту, CUIC - визуализатор данных из БД источников. Предварительная настройка его в этом и заключается - настроить источники данных (data sources). Разобрались с архитектурой. Теперь давайте посмотрим, как выглядит CUIC. Как выглядит CUIC? Давайте быстро пробежимся по UI интеледженс центра. Форма авторизации весьма стандартная: Чуть раньше в статье мы говорили про создание Data Source для CUIC - источников данных. Вот как этот конфигуратор выглядит в реальности: Тут совершенно ничего сложного. Просто плечо в БД. Теперь про отчеты. Вот так выглядит дашборд в системе. Обратите внимание, на нем преднастроены отчеты, стикеры (позволяющие запинить важные данные, например), фреймы на нужные веб - ресурсы: CUIC начиная с 12 версии В 12 версии Cisco прокачала свои интерфейсы в контакт - центровых продуктах (ну или купила компанию, которая это делает, сами понимаете). Изменения в плоскости интерфейса коснулись так же и агентского рабочего места Finesse. Посмотрите еще раз на скриншот выше. А теперь посмотреть, как изменился UI интерфейс CUIC:
img
Перед тем как начать чтение этой статьи, советуем ознакомиться с материалом про расчет пути по алгоритму Bellman - ford. Алгоритм диффузного обновления (Diffusing Update Algorithm -DUAL) - один из двух обсуждаемых здесь алгоритмов, изначально предназначенных для реализации в распределенной сети. Он уникален тем, что также удаляет информацию о достижимости и топологии, содержащуюся в конечном автомате алгоритма. Другие обсуждаемые здесь алгоритмы оставляют удаление информации на усмотрение реализации протокола, а не рассматривают этот аспект работы алгоритма внутри самого алгоритма. К 1993 году Bellman-Ford и Dijkstra были реализованы как распределенные алгоритмы в нескольких протоколах маршрутизации. Опыт, полученный в результате этих ранних реализаций и развертываний, привел ко "второй волне" исследований и размышлений о проблеме маршрутизации в сетях с коммутацией пакетов, что привело к появлению вектора пути и DUAL. Поскольку DUAL разработан как распределенный алгоритм, лучше всего описать его работу в сети. Для этой цели используются рисунки 8 и 9. Чтобы объяснить DUAL, в этом примере будет прослеживаться поток A, изучающего три пункта назначения, а затем обрабатываются изменения в состоянии доступности для этих же пунктов назначения. В первом примере будет рассмотрен случай, когда есть альтернативный путь, но нет downstream neighbor, второй рассмотрит случай, когда есть альтернативный путь и downstream neighbor. На рисунке 8 изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 3. Через C стоимостью 4. A не узнает путь через B, потому что B использует A в качестве своего преемника: A - лучший путь B для достижения D. Поскольку B использует путь через A для достижения D (пункта назначения), он не будет анонсировать маршрут, который он знает о D (через C) к A. B выполнит split horizon своего объявления D на A, чтобы предотвратить образование возможных петель пересылки. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через H помечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость C составляет 3. A знает это, потому что C объявляет маршрут к D со своей локальной метрикой, равной 3. A сохраняет локальную метрику C в своей таблице топологии. Следовательно, A знает локальную стоимость в C и локальную стоимость в A. 3 (стоимость в C) = 3 (стоимость в A), поэтому этот маршрут может быть петлей, следовательно, C не удовлетворяет условию выполнимости. C не помечен как downstream neighbors. Downstream neighbors в DUAL называются возможными преемниками. Предположим, что канал [A, H] не работает. DUAL не полагается на периодические обновления, поэтому A не может просто ждать другого обновления с достоверной информацией. Скорее A должен активно следовать альтернативному пути. Таким образом, это диффузный процесс обнаружения альтернативного пути. Если канал [A, H] не работает, учитывая только D: A проверяет свою локальную таблицу на предмет возможных преемников (Downstream neighbors). Возможных преемников нет, поэтому A должен найти альтернативный путь без петель к D (если он существует). A отправляет запрос каждому соседу, чтобы определить, есть ли какой-либо альтернативный путь без петель к D. В C: Преемником C является E (не A, от которого он получил запрос). Стоимость E ниже, чем стоимость A для D. Следовательно, путь C не является петлей. C отвечает со своей текущей метрикой 3 на A. В B: А - нынешний преемник Б. Посредством запроса B теперь обнаруживает, что его лучший путь к D потерпел неудачу, и он также должен найти альтернативный путь. Обработка B здесь не расписывается, а предоставляется выполнить самостоятельно. B отвечает A, что у него нет альтернативного пути (отвечает бесконечной метрикой). A получает эти ответы: Путь через C - единственный доступный, его стоимость 4. A отмечает путь через C как его преемника. Других путей к D нет. Следовательно, нет подходящего преемника (downstream neighbor). На рисунке 9 пункт назначения (D) был перемещен с H на E. Это будет использоваться во втором примере. В этом примере есть возможный преемник (downstream neighbor). Изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 4. Через C стоимостью 3. A не узнает никакого пути через B: У B есть два пути к D. Через C и A стоимостью 4. В этом случае B использует как A, так и C. B выполнит split horizon свого объявления D на A, потому что A помечен как преемник. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через C отмечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость H составляет 2. 2 (стоимость в H) = 3 (стоимость в A), поэтому этот маршрут не может быть петлей. Следовательно, H удовлетворяет условию выполнимости. H отмечен как возможный преемник (downstream neighbors). Если канал [A, C] не работает, просто рассматривая A: A проверит свою таблицу локальной топологии на предмет возможного преемника. Возможный преемник существует через H. A переключает свою локальную таблицу на H как лучший путь. Распространяющееся обновление не запускалось, поэтому пути не были проверены или пересчитано. Следовательно, допустимое расстояние изменить нельзя. Он остается на 3. A отправляет обновление своим соседям, отмечая, что его стоимость достижения D изменилась с 3 до 4. Как вы можете видеть, обработка, когда существует возможный преемник, намного быстрее и проще, чем без него. В сетях, где был развернут протокол маршрутизации с использованием DUAL (в частности, EIGRP), одной из основных целей проектирования будет ограничение объема любых запросов, генерируемых в случае отсутствия возможного преемника. Область запроса является основным определяющим фактором того, как быстро завершается двойной алгоритм и, следовательно, как быстро сходится сеть. На рисунке 10 показан базовый законченный автомат DUAL. Вещи, входящие в route gets worse (ухудшение маршрута), могут представлять собой: Отказ подключенного канала или соседа Получение обновления для маршрута с более высокой метрикой Получение запроса от текущего преемника Получение нового маршрута от соседа Обнаружен новый сосед, а также маршруты, по которым он может добраться Получение всех запросов, отправленных соседям, когда маршрут ухудшается
img
В одной из предыдущих статей мы рассматривали такой инструмент сетевого инженера как Puppet. Как мы выяснили, это решение экономит кучу времени администратора в сетях, которые насчитывают большое количество узлов. При этом в силу кроссплатформенности данное решение позволяет осуществлять настройку различных операционных систем и их версий для корректной работы сети. Эта программа имеет клиент-серверную архитектуру, то есть периферийные машины, на которых установлена клиентская часть, запрашивают и получают обновленные файлы с актуальными параметрами конфигурации, а затем программа осуществляет обновление параметров операционной системы в автоматическом режиме. Сегодня мы разберем конкретные примеры использования данного решения -зачем оно нужно и где оно применяется. На самом деле, сфера применения данного решения довольно широка. Это и небольшая локальная сеть группы разработчиков небольшого приложения на Android, сети покрупнее у компаний вроде небольших торговых сетей, сети больших организаций (таких, например, как сеть промышленного предприятия), и сети мегакорпораций, насчитывающие внутри себя десятки тысяч узлов. Как мы и писали ранее, манифесты Puppet, которые пишутся на языке, имеющем определенное сходство с Ruby (на котором и написана, в общем-то программа Puppet), хранятся в хранилище на сервере. Актуальные конфигурации настроек выдаются по запросам от клиентских машин. Это позволяет осуществлять быструю передачу однотипных настроек конфигурации, а затем устанавливать их параллельно на каждой клиентской машине, используя ее аппаратные мощности. Это решение применяется во многих компаниях. Официальными партнерами Puppet являются Нью-йоркская фондовая биржа NYSE, которая является частью межконтинентальной фондовой биржи ICE. На текущий момент более 75% серверов ICE управляются посредством Puppet. Применение данного решения позволило снизить нагрузку на администратора теперь один администратор без снижения производительности может обслуживать в 2,2 раза больше серверов, чем раньше. Значительно повышается скорость подготовки среды там, где раньше требовалось 1-2 дня, Puppet справляется примерно за полчаса. Кроме этого, Puppet замечательно справляется с передачей настроек безопасности, что позволяет обеспечить общую безопасность во всей системе, исключая уязвимости на периферии. Также использует Puppet такой представитель IT-индустрии, как компания Splunk.Inc. Эта компания занимается разработкой систем анализа данных для крупных корпораций и имеет офисы в 12 странах мира. С помощью Puppet здесь реализованы улучшения работы облачной технологии, а также улучшилась поддержка конечных пользователей. Специалисты компании отмечают значительное ускорение развертывания сети, и более эффективное управление клиентской средой, за счет лучшей согласованности Puppet по сравнению с ранними программными решениями. Кроме того, Puppet экономит время разработчиков если ранее многие машины требовали ручной корректировки настроек, то сейчас все происходит автоматически, позволяя выделять высвобождаемое время для разработки новых программных решений и обслуживания пользователей. Еще одним ярким примером эффективного применения Puppet является компания Staples один из ведущих производителей канцтоваров в мире. У этой компании широко разветвлённая сеть офисов, поэтому построение надежной и эффективной сети это одна из приоритетных задач. Используя решения Puppet, корпорация Staples развертывает сети более эффективно, а за счет отличной совместимости Puppet с различными операционными системами и другими программными продуктами, Staples успешно комбинирует решения различных команд разработчиков, подбирая и внедряя наиболее эффективные из них в свою систему управления сетью. Также специалисты компании Staples отмечают высокую надежность и эффективность данного решения. Если же упоминать использование Puppet в сравнительно небольших организациях, то администраторы небольших компаний также отмечают гибкость и удобство этой системы. Если компания насчитывает до 500 сотрудников, то она будет иметь не слишком крупную сеть. Но даже в этом случае сетевой инженер должен произвести настройку каждой машины. Разумеется, настраивать вручную несколько сотен рабочих станций - дело неблагодарное. Поэтому Puppet серьезно сокращает время на обслуживание сети и позволяет админу заняться другими задачами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59