По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет! Сегодня в статье мы покажем, как собирать трейсы с Cisco Unified Communications Manager (CUCM) . Это используется для траблшутинга системы, а так же эта информация будет необходима TAC инженерам Cisco при заведении заявки. Для того чтобы снять трейсы нам понадобится программа Real-Time Monitoring Tool. О том как ее установить можно прочитать в нашей статье. Сначала идем в меню Cisco Unified Serviceability, и переходим во вкладку Trace → Configuration. Здесь выбираем наш сервер, в строке Server, в строке Service Group выбираем CM Services, а в строке Service указываем Cisco CallManager. Дефолтные настройки показаны на скриншоте. Убедитесь, что галочка стоит в пункте Trace On, а в выпадающем меню Debug Trace Level выбран пункт Detailed. Тоже самое нужно повторить на других серверах кластера, если они имеются. Далее запускаем RTMT и подключаемся к нашему серверу. Тут переходим во вкладку System → Tools → Trace & Log Central. Нажимаем Collect Files и в открывшемся окне ставим галочки в строке Cisco CallManager выбрав необходимые сервера. Нажимаем Next и в следующем окне ставим галочки в пунктах Event Viewer → Application Log и Event Viewer → System Log. Далее необходимо выбрать временной промежуток снятия наших данных в поле Collection Time. В этом же окне, в поле Download File Options указываем папку, в которою все будет скачиваться. Теперь можно нажать Finish и после сбора информации нужные нам файлы окажутся в указанной ранее папке.
img
Привет, сегодня расскажем что такое база данных и SQL. У современных баз данных куча нюансов - погнали разбираться. Представь - собираешь ты деньги на подарок корешу, и записываешь на бумажке, кто сколько скинул. Табличка с денежками организована, разделена по именам и сумме долга, и имеет удобную структуру - ну вот оно, это и есть база данных! Ага, теперь, перемещаемся в цифровое пространство и заводим целый эксель файл для этого дела. Стало удобнее, можно редактировать, сортировать и даже данные удалять! Круто! Но достаточно ли этого для роста этой базы данных? Нет. Со временем данных становится так много, что админам приходится связывать их друг с другом, а тут одним эксель файлом уже не обойтись. Представим, решили вы сделать свой аналог ютуба, как будете хранить инфу о пользователях? Список юзеров, там, каналы, кто на что подписан, лайки и вот это все. Сложить это все в одну таблицу? Будет неудобно и медленно работать. Очевидно, надо разделить сущности на несколько таблиц - юзеры, каналы и видосы: Теперь свяжем данные между собой и добавим информацию о том, кто создал канал, и на каком канале залили видео. Ага, получились связанные таблицы. Связанные, от слова связь. А связь, это по-английски relation. А в айти тусовке они так и называются - реляционные базы данных, и это один самых распространенных типов баз данных. Еще есть нереляционные базы данных, о них подробнее можно прочитать в этой статье про NoSQL. Уф, ну теперь с данными стало гораздо удобнее работать, и мы избежали большой таблицы с повторяющимися строчками, разбив все на несколько табличек. Такой процесс еще называется нормализацией, когда мы избавляемся от избыточных данных. Ну и как раз для этого мы ввели в каждой таблице специальное поле - ID, которое идентифицирует каждую запись. Этот айди называется Primary Key, он же “первичный ключ”. А в таблице которая будет на него ссылаться, он будет называться Foreign Key, или по-русски “внешний ключ”. Нырнем в детали и поговорим про типы связей между таблицами. Первый тип называется “Один-ко-многим” или “многие-к-одному” (One-to-Many или Many-to-One). В нашем примере, у каждого видео может быть только один канал, где оно выложено, но на одном канале может быть много видео, поэтому в двух последних строках ID канала у нас повторяется, верно? Отношения «один-ко-многим» также можно рассматривать как отношения «многие-к-одному», в зависимости от того, с какой стороны вы на это смотрите. Второй тип связей называется “один-к-одному” (One-to-One) - классические табличные отношения. Вообще, это редко используемый тип связи, обычно его делают для безопасности. Это как если на нашем аналоге ютуба, мы разрешили бы создавать только один канал одному пользователю и в таблице с каналами ID создателя не могло повторяться. Такое себе, согласен? В таком случае вообще можно было бы обойтись и одной таблицей. Ну и третий тип связей, это “многие ко многим” (Many-to-many). Это когда у нас появляется промежуточная таблица связей, которая как бы соединяет два отношения “один ко многим”, которые мы обсудили в начале разбора типов связей. Давайте сделаем таблицу с лайками балалайками, где будем хранить ID пользователей и ID видео, к которым они поставили лайк: А вот так они связан: каждый пользователь может поставить лайк каждому видео. Теперь вопрос - а где все это хранить? Не в экселе же. И тут на сцену выходит термин СУБД, она же система управления базами данных - это программа, которая позволяет создавать, редактировать и администрировать реляционную базу. Ну и для управления всей этой петрушкой используется язык структурированных запросов, SQL (Structured Query Language) эскюэль или сиквел, как иногда его называют за рубежом. Он очень простой и понятный, вот смотри - чтобы найти названия всех видео с одного канала, нам нужно выполнить следующий запрос: SELECT name FROM videos WHERE channel_id = 201 То есть мы буквально говорим: выбери (SELECT) имена из (FROM) таблицы видео, где (WHERE) айдишник (ID) канала равен 201. Если вы хотите взять данные из нескольких таблиц и объединить результат, то нужно использовать в запрос параметр JOIN (от английского соединить). Вот такая упрощающая жизнь админам аналогия с разговорным языком. Так, SQL конечно позволяет добавлять, удалять и изменять данные и сами таблицы. Но важно не забывать про схему базы данных (Database schema), которая служит для описания структуры таблицы, ее полей и ограничений. Прикол в том, что если вам потребуется добавить или убрать столбец в таблице, то это изменение коснется вообще всех данных в таблице, таким образом если мы добавляем новый столбец, то он теперь будет присутствовать в каждой строке. Окей, а для чего вообще нужны ограничения? Для целостности твоих данных. Помнишь мы рассказали про первичный и внешний ключ? Так вот, благодаря им мы можем удостовериться, что в таблицу не попадет запись, которая ссылается на несуществующий айдишник. Или различные ограничения полей, которые не дадут записать дублирующие или пустые данные в нашу базу (Not NULL и Unique). И еще: транзакции. Эта штука, которая позволяет как бы склеить несколько SQL запросов в один. Ну вот представь такую задачку: вставить данные в первую таблицу, а во второй указать ID вставленной записи. Если ты делаешь это без использования транзакций, а во время второго этапа у тебя отвалится интернет, то первая запись попадет в базу, а вторая нет. Ага, появляется интернет, и ты с улыбкой на лице идешь снова выполнить эти запросы, только на этот раз получишь ошибку, что такая запись уже есть, ибо первая то уже в базе! А в случае использования транзакций, при получении ошибки, мы откатимся до того момента, который был до начала транзакции. А еще все эти радости помогают реляционным БД (базам данных) соответствовать так называемым требованиям ACID, которые нужны для сохранности данных - это очень важно в банковской отрасли, или любой другой, где целостность и сохранность данных супер важны. Давай разберемся с аббревиатурой: Atomicity — атомарность, или же проще говоря, непрерывность: это как раз про транзакции, которые мы обсудили только что. Либо операция выполняется целиком, либо никак. Consistency — согласованность: данные, записываемые в таблицу должны соответствовать всем выставленным правилам и ограничениям, помнишь, мы говорили про первичный и внешний ключи, а также про уникальность? Isolation — изолированность: если вы гоняете тонну транзакций одновременно, они не должны пересекаться и влиять друг на друга. Это очень важно для высоконагруженных баз Durability — надежность: если мы получили подтверждение, что транзакция выполнена, то значит наши данные в сохранности, даже если после этого произошел сбой. Ну и в качестве примеров таких баз данных назовем: Microsoft SQL Server, Oracle Database, MySQL, MariaDB и PostgreSQL.
img
Мы продолжаем рассказывать про протокол DHCP (Dynamic Host Configuration Protocol) . Мы уже знаем про принципы работы протокола и про его настройку на оборудовании Cisco, и сегодня речь пойдет о том, как находить и исправлять проблемы (заниматься траблшутингом) при работе с DHCP. Проблемы с DHCP могут возникать по множеству причин, таких как проблемы программного обеспечения, в операционных системах, драйверов сетевых карт или агентах ретрансляции, но наиболее распространенными являются проблемы с конфигурацией DHCP. Из-за большого числа потенциально проблемных областей требуется систематический подход к устранению неполадок. Задача 1. Устранение конфликтов IP адресов Срок действия адреса IPv4 может истекать у клиента, все еще подключенного к сети. Если клиент не возобновляет аренду, то сервер может переназначить этот IP-адрес другому клиенту. Когда клиент перезагружается, то он запрашивает адрес и если DHCP сервер не отвечает быстро, то клиент использует последний IP-адрес. Тогда возникает ситуация, когда два клиента используют один и тот же адрес, создавая конфликт. Команда show ip dhcp conflict отображает все конфликты адресов, записанные сервером DHCP. Сервер использует команду ping для обнаружения клиентов. Для обнаружения конфликтов клиент использует протокол ARP. Если обнаружен конфликт адресов, адрес удаляется из пула и не назначается, пока администратор не разрешит конфликт. Выгладит это так: Router# show ip dhcp conflict IP address Detection Method Detection time 192.168.1.33 Ping Feb 19 2018 10:33 AM 192.168.1.48 Gratuitous ARP Feb 19 2018 11:29 AM В столбце IP address указывается конфликтный адрес, в строке Detection Method указывается метод обнаружения (Ping – адрес был обнаружен когда при назначении нового адреса получил положительный ответ на пинг, Gratuitous ARP – конфликт обнаружен в ARP таблице) и Detection time показывает время обнаружения. Чтобы посмотреть список всех выданных адресов сервером используется команда show ip dhcp binding. Задача 2. Проверка физического подключения Сначала нужно проверить, что интерфейс маршрутизатора, действующий как шлюз по умолчанию для клиента, является работоспособным. Для этого используется команда show interface [интерфейс] , и если интерфейс находится в каком либо состоянии кроме как UP, то это означает что порт не передает трафик, включая запросы клиентов DHCP. Задача 3. Проверка связности, используя статический IP адрес При поиске проблем DHCP проверить общую работоспособность сети можно задав статический IP адрес у клиента. Если он может достичь сетевых ресурсов со статически настроенным адресом, то основной причиной проблемы является не DHCP. Задача 4: Проверить конфигурацию порта коммутатора Если DHCP клиент не может получить IP адрес с сервера, то можно попробовать получить адрес вручную, заставляя клиента отправить DHCP запрос. Если между клиентом и сервером DHCP есть маршрутизатор и клиент не может получить адрес, то причиной могут быть настройки портов. Эти причины могут включать в себя проблемы, связанные с транками и каналами, STP и RSTP. Конфигурация PortFast и настройка пограничных портов разрешают наиболее распространенные проблемы клиента DHCP, возникающие при первоначальной установке коммутатора. Задача 5: Проверка работы DHCP в одной и той же подсети или VLAN Важно различать, правильно ли работает DHCP, когда клиент находится в одной подсети или VLAN, что и DHCP-сервер. Если DHCP работает правильно, когда клиент находится в одной подсети, то проблема может быть ретранслятором DHCP (relay agent). Если проблема сохраняется даже при тестировании в одной подсети, то проблема может быть с сервером DHCP. Проверка конфигурации DHCP роутера Когда сервер DHCP находится в отдельной локальной сети от клиента, интерфейс маршрутизатора, обращенный к клиенту, должен быть настроен для ретрансляции запросов DHCP путем настройки helper адреса. Чтобы проверить конфигурацию маршрутизатора для начала нужно убедиться, что команда ip helper-address настроена на правильном интерфейсе. Она должна присутствовать на входящем интерфейсе локальной сети, содержащей DHCP клиентов, и должна быть направлена на правильный сервер DHCP. Для проверки используется команда show ip interface [интерфейс] . Далее нужно убедиться, что в глобальном режиме не была введена команда no service dhcp . Эта команда отключает все функции сервера DHCP и ретрансляции на маршрутизаторе. Для проверки используется команда show running-config | include no service dhcp. Если команда была введена, то она отобразится в выводе. Дебаг DHCP На маршрутизаторах, настроенных как DHCP-сервер, процесс DHCP не выполняется если маршрутизатор не получает запросы от клиента. В качестве задачи по траблшутингу нужно убедиться, что маршрутизатор получает запрос от клиента. Для этого дебага понадобится конфигурация ACL (Access Control List). Нужно создать расширенный Access List, разрешающий только пакеты с UDP портами назначения 67 или 68. Это типичные порты, используемые клиентами и серверами при отправке сообщений DHCP. Расширенный ACL используется с командой debug ip packet для того чтобы отображать только сообщения DHCP. Router(config)# access-list 100 permit udp any any eq 67 Router(config)# access-list 100 permit udp any any eq 68 Router(config)# end Router# debug ip packet 100 IP packet debugging is on for access list 100 *IP: s-0.0.0.0 (GigabitEthernet1/1), d-255.255.255.255, len 333, rcvd 2 *IP: s-0.0.0.0 (GigabitEthernet1/1), d-255.255.255.255, len 333, stop process pak for forus packet *IP: s-192.168.1.1(local), d-255.255.255.255 (GigabitEthernet1/1), len 328, sending broad/multicast Результат в примере показывает, что маршрутизатор получает запросы DHCP от клиента. IP-адрес источника равен 0.0.0.0, поскольку клиент еще не имеет адреса, адрес назначения - 255.255.255.255, потому что сообщение об обнаружении DHCP от клиента отправляется в виде широковещательной передачи. Этот вывод показывает только сводку пакета, а не сообщение DHCP. Тем не менее, здесь видно, что маршрутизатор получил широковещательный пакет с исходными и целевыми IP-адресами и портами UDP, которые являются правильными для DHCP. Другой полезной командой для поиска неполадок DHCP является команда событий debug ip dhcp server. Эта команда сообщает о событиях сервера, таких как назначения адресов и обновления баз. Router(config)#debug ip dhcp server events DHCPD: returned 192.168.1.11 to address pool POOL-1 DHCPD: assigned IP address 192.168.1.12 to client 0011:ab12:cd34 DHCPD: checking for expired leases DHCPD: the lease for address 192.168.1.9 has expired DHCPD: returned 192.168.1.9 to address pool POOL-1
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59