По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Вокруг только и разговоров, что про нейросети. А что с ними делать? Давайте рассмотрим новые (старые) профессии, где можно использовать искусственный интеллект. К примеру, согласно  исследованию Stack Overflow 70% респондентов используют или планируют использовать инструменты искусственного интеллекта в процессе разработки. Те, кто учится программировать, чаще, чем профессиональные разработчики, используют инструменты искусственного интеллекта (82% против 70%). Никто не знает будущего, но правда становится любопытно, сможет ли ИИ полностью заменить человека в некоторых профессиях. А пока предлагаем ознакомиться те области, в которых частично применяются нейросети.  AI-тренер Что делает: такой специалист обучает искусственный интеллект создавать корректные, грамотные и логичные ответы.  Требования: — Опыт работы с языковыми моделями, такими как OpenAI ChatGPT; — Уровень английского языка С1-С2; — Умение грамотно и понятно писать тексты на русском языке; — Образование в областях лингвистики, филологии, литературного творчества, журналистики, коммуникаций или смежных областей. Сколько зарабатывает: от 75 000 рублей. «Яндекс» был одним из первых на российском рынке труда, кто открыл вакансии для AI-тренеров. Компания начала искать редакторов, филологов, журналистов,  чтобы тренировать свою собственную нейросеть YandexGPT. Сейчас на хх.ру AI-тренеров ищут Сбер, МТС и «Яндекс».  Нейро/ИИ — иллюстратор Что делает: генерирует с помощью искусственного интеллекта изображения для соцсетей, логотипы, макеты и другие элементы графического дизайна. Также нейросети могут помочь с улучшением изображения, например, удалить шумы или увеличить четкость и т.д. Требования:  — Знание графических программ (Photoshop, Figma, Illustrator и прочие); — Навык работы с нейросетями: необходимо составлять для них точные и корректные запросы, чтобы получить нужный результат; — Насмотренность и чувство вкуса. Сколько зарабатывает: зависит от уровня компетенций, средняя зарплата примерно равна зарплате дизайнера. Промпт-инженер Что делает: он управляет ИИ-системами, разрабатывает и настраивает большие языковые модели. Промт — это текстовый запрос для нейросети. Суть новой профессии заключается в том, чтобы анализировать задачи заказчика, составлять правильный промт для системы и получать результат с помощью нейросети. В задачи промт-инженера также входит: анализ данных и контекста, тестирование промтов, их оптимизация и обновление.  Требования:  — Знание языков программирования (Java, C++ и Python); — Понимание моделей машинного обучения и нейронных сетей; — Опыт работы с СhatGPT, Claude, GigaChat, YandexGPT и др. чат-ботами.  — Знание английского языка будет преимуществом Сколько зарабатывает: это новая отрасль с большим потенциалом,  и специалистов, как и вакансий в ней не так много. По данным вакансий в США в 2024 году средняя зарплата промт-инженера составляет $63 тыс. в год.   ИИ-копирайтер Что делает: собственно, все тоже самое, что и обычный копирайтер, только с использованием искусственного интеллекта. Пока нейросеть не может составить структурированный лонгрид, но с небольшими текстами справляется легко. Условный ChatGPT не может полностью заменить людей, обладающих опытом написания экспертного контента, в котором есть креативность, сочувствие и личный опыт. Требования: — Навыки работы с текстом; — Работа с нейросетью: генерировать запросы, проверять, редактировать тексты; фактчекинг; — Знание основ маркетинга. Сколько зарабатывает: заработная плата начинается от 40 000 руб. Специалист по ИИ-этике Что делает: решает сложные этические ситуации, которые возникают при использовании искусственного интеллекта. Он разрабатывает стандарты взаимодействия с ИИ, следит за сбором, использованием и безопасностью персональных данных, анализирует и оценивает новые алгоритмы на предмет ошибок или предвзятости, может принимать участие в судебном процессе в качестве эксперта по безопасному использованию нейросети.  Требования: — Понимание технологии ИИ; — Знание законодательства: международное право, IT-право, право на интеллектуальную собственность; — Широкий кругозор в области этики, философии, психологии и социологии. Сколько зарабатывает: предложений по работе пока немного, вакансии встречаются на англоязычных сайтах. Средняя зарплата в США  составляет $153,500 в год.  AI Product Manager Что делает: создает, управляет и развивает продукты, основанные на искусственном интеллекте. Такой специалист обладает знаниями на стыке продакт-менеджмента и хорошо ориентируется на ИИ-рынке. Требования:  — Понимание технологий искусственного интеллекта; — Опыт в продуктовом менеджменте; — Аналитические навыки: умение оценивать данные, рынок и тренды в технической области; — Софт-скиллс: коммуникативные навыки, проактивность, лидерские качества и тд. Сколько зарабатывает: зарплаты начинаются от 150 000 руб., на американской рынке менеджеры ИИ-продуктов получают конкурентоспособную зарплату от 100 000 до 150 000 долларов в год. Кроме новых профессий, связанных с искусственным интеллектом, его можно использовать в других рабочих задачах. Известны примеры, когда ChatGPT помогал студентам выполнять письменные работы или писал сценарий для нового сюжета. Разработчики с его помощью могут оптимизировать работу и писать участки кода в нейросети. Уверены, мы еще увидим новые направления на стыке искусственного интеллекта.   
img
В данной главе рассматриваются вопросы технической диагностики системы автоматического мониторинга ВОЛС, необходимость в которой возникает из-за сложности этой системы. Техническое диагностирование - процесс определения технического состояния изделия с определенной точностью. Цель технического диагностирования это поддержание достаточного уровня надежности. При наступлении отказа диагностирование предполагает обнаружение факта отказа и его локализацию. Система технического диагностирования (СТД) - совокупность средств, осуществляющих измерение количественных значений параметров (диагностических параметров ДП), анализ и обработку результатов измерений по установленным алгоритмам. Техническим средством диагностирования являются автоматические измерительные системы, рассмотренные в главе 2. Одним из основных методов решения задач диагностирования является моделирование объекта технического диагностирования и выделение взаимосвязей в этих моделях. Модель объекта - это формализованная сущность, характеризующая определенные свойства реального объекта в удобной и желательно для инженера в наглядной форме. Существуют аналитические модели, в которых модель строится на основе уравнений, связывающих различные параметры; графоаналитические, основанные на представлении диаграмм (в частности направленных графов) прохождения сигналов; информационные модели представляют собой информационные описания в терминах энтропия, информация и т.п. Чаще всего используемым в практических целях и наиболее наглядным являются функционально-логические модели, которые реализуются различными способами, определяемыми особенностью функциональной схемы диагностируемого изделия. В настоящей работе применяется диагностирование, основанное на функционально-логическом моделировании и реализуемое инженерным способом. В соответствии с решаемой задачей выбирается та или иная "функция предпочтения". В данном случае решается задача поиска неисправности, для которой выбирается W4 функция предпочтения о которой ниже. Разработка алгоритма диагностирования Считаем, что объект диагностирования задан следующей функциональной схемой (рисунок 1). После построения функциональной модели необходимо определить множество возможных состояний объекта, который диагностируется. Общее число состояний при N функциональных элементов при двоичных исходах проверок (1 исправно, 0 неисправно) равно при диагностировании системы 2N - 1. Предполагается, что одновременное появление двух независимых отказов маловероятно, поэтому число сочетаний из N элементов по одному, равно N. Число всех возможных различных состояний аппаратуры, которая диагностируется, одновременно с учетом отказов одного функционального - сводятся в таблицу состояний (матрицу исправностей, матрицу неисправностей и т. п.), которая используется при разработке программы (алгоритма) поиска неисправностей. Матрица состояний строится по следующим правилам: S0 - строка, соответствующая работоспособному состоянию; Sj - строка, соответствующая состоянию в котором оказался j-тый элемент модели. Например, состояние S4 = 0 означает событие, при котором отказал 4-ый четвертый элемент модели; S2 = 0- второй и т.п.). Этому событию соответствует недопустимое значение сигнала Zi, и тогда на пересечении пишется 0. Если любой другой i - й элемент также недопустимое значение Zi, то на пересечении j ой строки и Zi - ого столбца таким же образом записывается "0"; при этом, если значение параметра будет находиться в допуске, то на пересечении пишется "1". Считается, что значения всех внешних входных сигналов xi всегда будут находиться в пределах допуска, а линии связи между элементами абсолютно надежны. Если есть сомнение в надежности линии, то её принимают за функциональный элемент. Транспонируем матрицу (таблица 1). Так как мы осуществляем построение алгоритма поиска неисправности, то первую строку S0, означающее исправное состояние исключаем. Последний столбец функция предпочтения W4, которую установили из следующих соображений. Так как матрица заполнена нулями и единицами, то равенство некоторого ij элемента соответствует тому, отказ i-го элемента влияет на j-ый выходной параметр j-го элемента, если контролировать выходной параметр Zj можно определить, в каком именно состоянии находится i-ый элемент. Следовательно, чем больше "0" в строке Zj матрицы, тем более большое количество информации может нести этот параметр о состоянии объекта, который находится под контролем. Для этого в качестве предпочтительной функции решении данной задачи контроля работоспособности необходимо принимать функцию вида: Где ; - означает количество нулей в I-ой строке матрицы. Если для объекта контроля известны вероятности состояний P(Zi): Также заданы C(Zi) стоимости контроля параметров: Так как строится алгоритм нахождения неисправности, то функция предпочтения будет: где суммы означают количество нулей и единиц соответственно в I-той строке транспонированной матрицы состояний. Значения W4(Zi) для каждой строки приведены в последнем столбце транспонированной матрицы (таблица 3.2). Последовательность решения следующая: 1) Выбираем ту строку, в которой функция предпочтения W4(Zi) минимальна, так как эта строка несет максимальное количество информации, разбивая все возможные состояния объекта на две равные части. 2) Минимально значение для 6,7,13 и 14 строк, т.е. по этому критерию они равнозначны. Для контроля выбираем строку 7. Итог контроля по этому параметру W4(Zi) разбивает матрицу на равные части W4(Z7) - первое разложение: 2.1) Эти состояния не влияют на данный выходной параметр функционального элемента; 2.2) Значения параметра не в допуске, что говорит о неисправности объекта. 3) Дальше аналогично анализируются обе получившиеся части (3-е, 4-е и последующие разложения (как показано на рисунке 6). 4) Процедура продолжается, пока множество N=14 возможных состояний объекта диагностирования не будут разделены на отдельные состояния. Чтобы упорядочить для дальнейшего осколки введём следующее обозначение для каждого конкретного осколка: Где m - номер разбиения; "H" - принимает значение 1 или 0 в зависимости от состояния строки матрицы; n - номер осколка, считая, что осколки всегда располагаются, начиная с "1". Например, обозначение 3«0»6 значит, что это осколок при третьем разбиении для значения "0". (впрочем, "1" всегда соответствуют нечетные значения "n", а «0» - четные) Ниже представлены результаты анализа для принятой конкретной функциональной модели на рисунке 3. Первое разбиение по строке Z7, имеющая W7 = 0 z7, имеющая W7 = 0 В таблице 3.3. представлена матрица (осколок) после первого разбиения для результатов проверки «1», т.е. при введенных обозначениях: 1«1»1. Для второго разбиения взята строка Z11, имеющая меньшее значение функции предпочтения W4 = 1 В таблице 3.4 представлена таблица после первого разбиения с «0»,, т.е. 1«0»,1. Дальше "заливкой" показаны строчки, выбранные для следующих разбиений. Для первого разбиения матрицы взята строка Z11, функция предпочтения которой W4 = 1. S8 S9 S10 S11 S12 S13 S14 W4 z8 0 1 1 1 1 1 1 5 z9 1 0 1 1 1 1 1 5 z10 1 1 0 1 1 1 1 5 z11 1 1 0 0 0 1 1 1 z12 1 1 0 0 0 1 1 1 z13 1 1 0 0 0 0 1 1 z14 1 1 0 0 0 1 0 1 Таблица 3. - 1«1»1 S1 S2 S3 S4 S5 S6 S7 W4 z1 0 1 1 1 1 1 1 5 z2 0 0 0 1 1 1 1 1 z3 1 1 0 1 1 1 1 1 z4 1 1 0 0 0 1 1 1 z5 1 1 0 0 0 1 1 3 z6 1 1 0 0 0 0 1 7 z7 1 1 0 0 0 1 0 7 Таблица 4. - 1«0»1 Матрица после второго разбиения при «1». Для 3-го разбиения взята строка Z13 Результаты третьего разбиения: Результаты четвертого разбиения: По результатам разбиений получаем номера ФБ для контроля: результат третьего разбиения: 3«0»2→13; 3«1»4→11 и 12; 3«0»4→10; 3 «1»5→6 и 7; 3«0»6→5; 3 «1»7→4. Результат четвертого разбиения: 4«0»2 → 9. Результат пятого разбиения: 5«1»1 → 8; 5«0» →14; 5«1»15 → 2 и 3; 5«0»16 →1. По полученным в результате анализа матрицы состояний номерам контролируемых ФБ для определения неисправного блока строим алгоритм контроля. Алгоритм контроля Рисунок 2. Как видно из алгоритма, максимальное количество элементарных проверок для нахождения неисправного ФБ равно 5 (в данном случае ФБ 8 и 14) Заключение 1.На основе функционально-логической модели и инженерного способа разработан оптимальный алгоритм диагностирования гипотетической систем, которая моделирует систему автоматического контроля и мониторинга. 2. Проведен расчет и в результате получен алгоритм. Для принятой модели максимальное число элементарных испытаний равно 5.
img
Любая программа – это набор инструкций, будь то добавление 2 чисел или отправка запроса по сети. Компиляторы и интерпретаторы берут понятный для человека код и переводят его на машинный язык, который может прочесть компьютер. В компилируемом языке целевая машина переводит программу самостоятельно. В интерпретируемом языке исходный код не переводится самой машиной; его читает и выполняет другая программа (интерпретатор). Подробное объяснение Представьте ситуацию: вы решили приготовить хумус. Но имеющийся у вас рецепт написан на древнегреческом. У вас, как человека не знающего этого языка, есть два варианта. Вариант 1: кто-то уже перевел этот рецепт на ваш язык. Поэтому вы (и любой человек, знающий ваш язык) сможете прочесть рецепт в переводе и приготовить хумус. Переведенный рецепт и будет компилированной версией. Есть и другой вариант: у вас есть друг, который знает древнегреческий. Поэтому, решив приготовить хумус, вы пригласили этого друга к себе. Друг сидит рядом и переводит рецепт – строчка за строчкой, – а вы занимаетесь готовкой. Ваш друг – это интерпретатор (переводчик) для интерпретируемой версии рецепта. Компилируемые языки Компилируемые языки сразу переводятся в машинный код, который может выполнить процессор. В результате они выполняются быстрее и эффективнее, чем интерпретируемые языки. Кроме того, в таких языках разработчик лучше контролирует аппаратные средства (управление памятью, использование ЦП и т.д.). Компилируемым языкам требуется дополнительный этап «сборки», при котором их сначала компилируют вручную. Каждый раз при внесении изменений вам нужно будет «пересобирать» программу. Вернемся к примеру с хумусом. Перевод рецепта делался до того, как попал к вам в руки. Если автор рецепта захочет изменить тип оливкового масла, то весь рецепт придется переводить заново, а затем повторно отправлять вам. Примеры истинных компилируемых языков: C, C++, Erlang, Haskell, Rust и Go. Интерпретируемые языки Интерпретаторы проходятся по каждой строке программы и выполняют все команды. Если автор из нашего примера захочет заменить оливковое масло, то он просто зачеркнет старую запись и добавит новую. А затем ваш друг-переводчик сразу увидит это изменение и переведет его вам. Интерпретируемые языки гораздо медленнее компилируемых. Но с появлением JIT-компиляции (динамической компиляции) эта разница начинает сокращаться. Примеры популярных интерпретируемых языков: PHP, Ruby, Python и JavaScript. Небольшое пояснение В большинстве языков программирования есть компилируемые и интерпретируемые реализации, а сам язык необязательно относится только к компилируемым или интерпретируемым. Но для простоты и удобства их принято относить к тому или иному типу. Например, Python можно выполнять как компилируемую программу или интерпретируемый язык в интерактивном режиме. А большинство инструментов командной строки, интерфейсов командной строки и оболочек чисто теоретически относятся к интерпретируемым языкам. Плюсы и минусы Плюсы компилируемых языков Обычно программы, скомпилированные в машинный код, выполняются быстрее интерпретируемых. Это связано с тем, что при переводе кода в процессе его выполнения увеличивается потребление ресурсов, что, в свою очередь, замедляет программу. Минусы компилируемых языков Основные недочеты компилируемых языков: нужно больше времени для завершения полной компиляции перед тестированием; сгенерированный двоичный код зависит от платформы. Плюсы интерпретируемых языков Интерпретируемые языки более гибкие и чаще предлагают такие возможности, как динамическая типизация и меньший размер программы. Кроме того, исходный код программы выполняют интерпретаторы, поэтому сам код не зависит от платформы. Минусы интерпретируемых языков Самый главный недочет этих языков – скорость выполнения. Она обычно ниже, чем в компилируемых языках.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59