По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Порой, например, при подключении аналогового телефона через FXS шлюз, на котором отсутствует регулировка громкости, необходимо отрегулировать громкость при разговоре. Предположим, что на FXS шлюзе отсутствует регулировка на порту, к которому подключен телефон. Давайте разберемся: Данная регулировка реализуется на базе VOLUME(TX|RX). Информацию по ней можно посмотреть через консоль Asterisk: asterisk*CLI> core show function VOLUME -= Info about function 'VOLUME' =- [Synopsis] Set the TX or RX volume of a channel. \ можно настроить громкость для канала [Description] The VOLUME function can be used to increase or decrease the 'tx' or 'rx' gain of any channel. For example: Set(VOLUME(TX)=3) Set(VOLUME(RX)=2) Set(VOLUME(TX,p)=3) Set(VOLUME(RX,p)=3) [Syntax] VOLUME(direction[,options]) [Arguments] direction Must be 'TX' or 'RX'. options p: Enable DTMF volume control [See Also] Not available Данная функция имеет 2 параметра: Направление, т.е TX – отправка, RX – прием. Дополнительная опция p, которая активирует контроль над звуком по DTMF На данном этапе мы разобрались с функцией VOLUME. Теперь открываем файл extensions_customs.conf и производим следующие настройки нового контекста: [root@asterisk ~]# vim /etc/asterisk/extensions_custom.conf [volume-set] exten => _X.,1,NoOp(Volume settings) same => n,Set(VOLUME(TX)=5) same => n,Set(VOLUME(RX)=5) same => n,Goto(from-internal,${EXTEN},1) Теперь открываем необходимый нам Extension, и в поле Context, вносим название созданного нами выше контекста - volume-set. Теперь можно регулировать громкость в настройках контекста, изменяя значение с 5 на другое, параллельно проверяя громкость в трубке
img
Если вы начинающий веб-разработчик, возможно вы уже знаете, как работает всемирная сеть, по крайней мере, на базовом уровне. Но когда начинаете кому-то объяснять принцип работы веб-сайта, то терпите неудачу. Что такое IP-адрес? Как работает модель «клиент-сервер» на самом деле? В наши дни есть достаточно мощные фреймворки, которые можно использовать в своих проектах. Настолько мощные, что начинающие разработчики легко могут запутаться в принципах работы веб. Базовый веб-поиск Начнем с того места, где мы все были раньше: введите «www.github.com» в адресную строку браузера и просмотрите загрузку страницы. С первого взгляда может показаться, что тут происходит какая-то магия. Но давайте заглянем глубже. Определение частей web Из-за обилия жаргонных слов, понимание работы интернета поначалу пугает. Но к сожалению, для дальнейшего погружения в тему, придется разобраться с ними. Клиент: Приложение, например, Chrome или Firefox, которое запущено на компьютере и подключено к Интернету. Его основная роль состоит в том, чтобы принимать пользовательские команды и преобразовывать их в запросы к другому компьютеру, называемому веб-сервером. Хотя мы обычно используем браузер для доступа к Интернету, вы можете считать весь ваш компьютер «клиентом» модели клиент-сервер. Каждый клиентский компьютер имеет уникальный адрес, называемый IP-адресом, который другие компьютеры могут использовать для идентификации. Сервер: Компьютер, который подключен к Интернету и также имеет IP-адрес. Сервер ожидает запросов от других машин (например, клиента) и отвечает на них. В отличие от вашего компьютера (т.е. клиента), который также имеет IP-адрес, на сервере установлено и работает специальное серверное программное обеспечение, которое подсказывает ему, как реагировать на входящие запросы от вашего браузера. Основной функцией веб-сервера является хранение, обработка и доставка веб-страниц клиентам. Существует множество типов серверов, включая веб-серверы, серверы баз данных, файловые серверы, серверы приложений и многое другое. Подробнее про сервера можно прочитать тут IP-адрес: Internet Protocol Address. Числовой идентификатор устройства (компьютера, сервера, принтера, маршрутизатора и т.д.) в сети TCP/IP. Каждый компьютер в Интернете имеет IP-адрес, который он использует для идентификации и связи с другими компьютерами. IP-адреса имеют четыре набора чисел, разделенных десятичными точками (например, 244.155.65.2). Это называется «логический адрес». Для определения местоположения устройства в сети логический IP-адрес преобразуется в физический адрес программным обеспечением протокола TCP/IP. Этот физический адрес (т.е. MAC-адрес) встроен в оборудование. Подробнее про IP-адрес можно прочитать тут Интернет-провайдер: Интернет-провайдер. Интернет-провайдер - посредник между клиентом и серверами. Для типичного домовладельца ИП обычно является «кабельной компанией». Когда браузер получает от вас запрос на переход к www.github.com, он не знает, где искать www.github.com. Это задание поставщика услуг Интернета - выполнить поиск DNS (системы доменных имен), чтобы спросить, на какой IP-адрес настроен сайт, который вы пытаетесь посетить. DNS: система доменных имен. Распределенная база данных, которая хранит соответствие доменных имен компьютеров и их IP-адресов в Интернете. Не беспокойтесь о том, как сейчас работает «распределенная база данных»: просто знайте, что DNS существует, чтобы пользователи могли вводить www.github.com вместо IP-адреса. Подробнее про DNS можно прочитать тут Имя домена: используется для идентификации одного или нескольких IP-адресов. Пользователи используют доменное имя (например, www.github.com) для доступа к веб-сайту в Интернете. При вводе имени домена в обозреватель DNS использует его для поиска соответствующего IP-адреса данного веб-сайта. TCP/IP: Наиболее широко используется протокол связи. «Протокол» - это просто стандартный набор правил для чего-либо. TCP/IP используется в качестве стандарта для передачи данных по сетям. Подробнее про TCP/IP можно прочитать тут Номер порта: 16-разрядное целое число, которое идентифицирует определенный порт на сервере и всегда связано с IP-адресом. Он служит способом идентификации конкретного процесса на сервере, на который могут пересылаться сетевые запросы. Хост: Компьютер, подключенный к сети - это может быть клиент, сервер или любой другой тип устройства. Каждый хост имеет уникальный IP-адрес. Для веб-сайта, как www.google.com, хост может быть веб-сервером, который обслуживает страницы для веб-сайта. Часто между хостом и сервером происходит какая-то путаница, но заметьте, что это две разные вещи. Серверы - это тип хоста - это конкретная машина. С другой стороны, хост может ссылаться на всю организацию, которая предоставляет службу хостинга для обслуживания нескольких веб-серверов. В этом смысле можно запустить сервер с хоста. HTTP: протокол передачи гипертекста. Протокол, используемый веб-браузерами и веб-серверами для взаимодействия друг с другом через Интернет. URL: URL-адреса идентифицируют конкретный веб-ресурс. Простой пример https://github.com/someone. URL указывает протокол («https»), имя хоста (github.com) и имя файла (чья-то страница профиля). Пользователь может получить веб-ресурс, идентифицированный по этому URL-адресу, через HTTP от сетевого хоста, доменное имя которого github.com. Подробнее про URL можно прочитать тут Переход от кода к веб-странице Теперь у нас есть необходимая база, чтобы разобраться, что происходит за кулисами, когда мы вводим в строку поиска адрес Github: 1) Введите URL-адрес в браузере 2) Браузер анализирует информацию, содержащуюся в URL. Сюда входят протокол («https»), доменное имя («github.com») и ресурс («/»). В этом случае после «.com» нет ничего, что указывало бы на конкретный ресурс, поэтому браузер знает, как получить только главную (индексную) страницу. 3) Браузер связывается с поставщиком услуг Интернета, чтобы выполнить DNS-поиск IP-адреса для веб-сервера, на котором размещен веб-сервер www.github.com. Служба DNS сначала свяжется с корневым сервером имен, который просматривает https://www.github.com и отвечает IP-адресом сервера имен для домена верхнего уровня .com. Получив этот адрес служба DNS выполняет еще один запрос на сервер имен, который отвечает за домен .com и запрашивает адрес https://www.github.com. 4) Получив IP-адрес сервера назначения, Интернет-провайдер отправляет его в веб-браузер. 5) Ваш браузер берет IP-адрес и заданный номер порта из URL (протокол HTTP по умолчанию - порт 80, а HTTPS - порт 443) и открывает TCP-сокет. На этом этапе связь между веб-браузером и веб-сервер наконец-то установлена. 6) Ваш веб-браузер отправляет HTTP-запрос на веб-сервер главной HTML-страницы www.github.com. 7) Веб-сервер получает запрос и ищет эту HTML-страницу. Если страница существует, веб-сервер подготавливает ответ и отправляет его обратно в браузер. Если сервер не может найти запрошенную страницу, он отправляет сообщение об ошибке HTTP 404 (тот самый Error 404 Not Found), которое означает «Страница не найдена». 8) Ваш веб-браузер берет HTML-страницу, которую он получает, а затем анализирует ее, делая полный обзор, чтобы найти другие ресурсы, которые перечислены в ней: это адреса изображений, CSS файлов, JavaScript файлов и т.д. 9) Для каждого перечисленного ресурса браузер повторяет весь указанный выше процесс, делая дополнительные HTTP-запросы на сервер для каждого ресурса. 10) После того, как браузер закончит загрузку всех других ресурсов, перечисленных на странице HTML, страница будет загружена в окно браузера и соединение будет закрыто. Пересечение Интернет-пропасти Стоит отметить, как информация передается при запросе информации. Когда вы делаете запрос, эта информация разбивается на множество крошечных порций, называемых пакетами. Каждый пакет маркируется заголовком TCP, который включает в себя номера портов источника и назначения, и заголовком IP, который включает в себя IP-адреса источника и назначения. Затем пакет передается через сеть Ethernet, WiFi или сотовую сеть. Пакет может перемещаться по любому маршруту и проходить столько транзитных участков, сколько необходимо для того, чтобы добраться до конечного пункта назначения. И пакеты передаются отнюдь не в том, порядке, в котором они сформировались. Например, первый пакет может прийти третьим, а последний первым. Нам на самом деле все равно, как пакеты туда попадут - важно только то, что они доберутся до места назначения в целости и сохранности! Как только пакеты достигают места назначения, они снова собираются и доставляются как единое целое. Так как же все пакеты знают, как добраться до места назначения без потери? Ответ: TCP/IP. TCP/IP - это двухкомпонентная система, функционирующая как фундаментальная «система управления» Интернета. IP означает Интернет-протокол; его задачей является отправка и маршрутизация пакетов на другие компьютеры с использованием заголовков IP (т.е. IP-адресов) каждого пакета. Вторая часть, протокол управления передачей (TCP), отвечает за разбиение сообщения или файла на меньшие пакеты, маршрутизацию пакетов к соответствующему приложению на целевом компьютере с использованием заголовков TCP, повторную отправку пакетов, если они теряются в пути, и повторную сборку пакетов в правильном порядке, как только они достигают другого конца. Получение финальной картины Но подождите - работа еще не закончена! Теперь, когда ваш браузер имеет ресурсы, составляющие веб-сайт (HTML, CSS, JavaScript, изображения и т.д.), он должен пройти несколько шагов, чтобы представить вам ресурсы в виде читабельной для нас с вами веб-страницы. В браузере имеется механизм визуализации, отвечающий за отображение содержимого. Обработчик рендеринга получает содержимое ресурсов в небольших фрагментах. Затем существует алгоритм синтаксического анализа HTML, который сообщает браузеру, как анализировать ресурсы. После анализа создается древовидная структура элементов DOM. DOM (Document Object Model) обозначает объектную модель документа и является условным обозначением для представления объектов, расположенных в HTML-документе. Этими объектами - или «узлами» - каждого документа можно управлять с помощью таких языков сценариев, как JavaScript. После построения дерева DOM анализируются таблицы стилей, чтобы понять, как определить стиль каждого узла. Используя эту информацию, браузер проходит вниз по узлам DOM и вычисляет стиль CSS, положение, координаты и т.д. для каждого узла. После того как в браузере появятся узлы DOM и их стили, он наконец готов соответствующим образом нарисовать страницу на экране. Результат – все, что вы когда-либо просматривали в интернете. Итог Интернет - это комплексная вещь, но вы только что закончили сложную часть! О структуре веб-приложений мы расскажем в нашей следующей статье.
img
Для захвата трафика можно использовать маршрутизаторы Cisco, при помощи утилиты Cisco Embedded Packet Capture, которая доступна, начиная с версии IOS 12.4.20T. В этой статье мы расскажем, как настроить EPC для захвата пакетов на роутере, сохранять их на flash памяти или экспортировать на ftp/tftp сервер для будущего анализа, при помощи анализатора пакетов, например, такого как Wireshark. Давайте рассмотрим некоторые из основных функций, которые предлагает нам Embedded Packet Capture: Экспорт пакетов в формате PCAP, обеспечивающий анализ с помощью внешних инструментов Возможность задать различные параметры буфера захвата Отображение буфера захвата Захват IPv4 и IPv6 пакетов в пути Cisco Express Forwarding Прежде чем начать конфигурацию Cisco EPC необходимо разобраться с двумя терминами, которые будут использоваться в процессе – Capture Buffer(буфер захвата) и Capture Point (точка захвата) Capture buffer – это зона в памяти для хранения пакетных данных. Существует два типа буферов захвата Linear (линейный) и Circular (кольцевой): Linear Capture Buffer – когда буфер захвата заполнен, он перестает захватывать данные Circular Capture Buffer – когда буфер заполнен, он продолжает захватывать данные, перезаписывая старые данные Capture Point – это точка транзита трафика, в которой фиксируется пакет. Тут определяется следующее: IPv4 или IPv6 CEF (Cisco Express Forwarding) или Process-Switched Интерфейс (например Fast Ethernet 0/0, Gigabit Ethernet 1/0) Направление трафика: входящий (in), исходящий (out) или оба Настройка Cisco Embedded Packet Capture Рассмотрим настройку на примере нашей схемы, где мы хотим захватить входящие и исходящие пакеты на интерфейсе FastEthernet 0/0 от ПК с адресом 192.168.1.5 до веб-сервера wiki.merionet.ru с адресом 212.193.249.136 Первым делом мы создадим буфер, который будет хранить захваченные пакеты. Для этого используем команду monitor capture buffer [имя] size[размер] [тип] . Создадим буфер merionet_cap, размером 1024 килобайта (1 мегабайт, стандартный размер) и сделаем его линейным. Router#monitor capture buffer merionet_cap size 1024 linear Далее мы можем настроить захват определенного трафика. В нашем случае нужно захватить трафик между 192.168.1.5 и 212.193.249.136. Это достигается при помощи списков контроля доступа ACL. Мы можем использовать стандартные или расширенные списки доступа в зависимости от требуемой детализации. Если список доступа не настроен, то захвачен будет весь трафик. Router(config)#ip access-list extended web-traffic Router(config-ext-nacl)#permit ip host 192.168.1.5 host 212.193.249.136 Router(config-ext-nacl)#permit ip host 212.192.249.136 host 192.168.1.5 Наш список доступа включает трафик, исходящий от обоих хостов, потому что мы хотим захватить двунаправленный трафик. Если бы мы включили только один оператор ACL, тогда был бы зафиксирован только односторонний трафик. Теперь свяжем наш буфер с access-list’ом, при помощи команды monitor capture buffer [название_буфера] filter access-list [название_ACL] Router#monitor capture buffer merionet_cap filter access-list web-traffic Затем следующем шагом мы определяем, какой интерфейс будет точкой захвата. В нашем случае это FastEthernet 0/0, и мы будем захватывать как входящие, так и исходящие пакеты. Во время этой фазы конфигурации нам нужно предоставить имя для точки захвата. Также очень важно ввести команду ip cef для обеспечения минимального влияния на процессор маршрутизатора, при помощи Cisco Express Forwarding. Если ip cef не включен, то появится сообщение IPv4 CEF is not enabled. Используем команду monitor capture point ip cef [имя_точки] [интерфейс] [направление] . Router#monitor capture point ip cef MNpoint FastEthernet0/0 both Теперь мы связываем сконфигурированную точку захвата с буфером захвата командой monitor capture point associate [название_точки][название_буфера] . На этом этапе мы готовы начать сбор пакетов. Router#monitor capture point associate MNpoint merionet_cap Чтобы начать сбор пакетов используем команду monitor capture point start [название_интерфейса] . Router# monitor capture point start MNpoint Чтобы остановить процесс захвата используется команда monitor capture point stop [название_интерфейса] . Router# monitor capture point stop MNpoint Полезные команды проверки: show monitor capture buffer – показывает состояние буфера захвата show monitor capture point – показывает состояние точки захвата show monitor capture buffer [название_буфера] – показывает информацию о захваченных пакетах show monitor capture buffer [название_буфера] dump – показывает содержание буфера Экспорт данных В большинстве случаев захваченные данные необходимо будет экспортировать в сетевой анализатор трафика (например, WireShark) для дополнительного анализа в удобном для пользователя интерфейсе. Захваченный буфер можно экспортировать в несколько местоположений, включая: flash: (на маршрутизаторе), ftp, tftp, http, https, scp и другие. Для экспорта буфера используется команда monitor capture buffer[имя_буфера] export [адрес] . Router#monitor capture buffer merionet_cap export tftp://192.168.1.10/capture.pcap После этого файл capture.pcap появится на нашем TFTP сервере, и мы можем открыть его в сетевом анализаторе.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59