По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой серии статей мы рассмотрим поиск и устранение неисправностей NAT (трансляции сетевых адресов) / PAT (трансляции адресов портов), DHCP и FHRP (протоколы избыточности при первом переходе). NAT/PAT может быть проблемным, и не потому, что настройка несколько сложна (хотя и в этом тоже могут быть проблемы). Но в основном потому, что мы можем столкнуться с проблемами маршрутизации, так как мы периодически меняем IP-адреса. Во второй части этой серии мы рассмотрим наиболее распространенные проблемы DHCP и, наконец, закончим серию статей некоторыми проблемами FHRP. Урок 1 В этом сценарии у нас есть 3 устройства. Маршрутизатор с левой стороны называется "Хост", и он представляет компьютер из нашей локальной сети. Предполагается, что устройство с правой стороны - это какой-то веб-сервер - это то, что мы пытаемся найти в Интернете. В середине мы видим наш маршрутизатор, который настроен для NAT и/или PAT. Пользователи из нашей локальной сети жалуются на то, что они ничего не могут найти в Интернете. Они подтвердили, что их IP-адрес и шлюз по умолчанию в порядке. Давайте изучим маршрутизатор NAT: Хорошая идея, чтобы проверить, может ли маршрутизатор NAT достичь веб-сервера, попробовав простой пинг. Если это не работает, вы, по крайней мере, знаете, что у вас есть проблемы с маршрутизацией или, что веб-сервер не работает (или, возможно, просто блокирует ICMP-трафик). Поскольку это веб-сервер, лучше попробовать подключиться к TCP-порту 80. Вы видите, что это работает, так что маршрутизация между маршрутизатором NAT и веб-сервером + подключение к TCP-порту не является проблемой. Мы можем использовать команду show ip nat translations, чтобы увидеть, происходит ли что-нибудь. Мы видим, что NAT-маршрутизатор что-то транслирует, но если вы посмотрите внимательно, то увидите, что это выглядит не совсем правильно. Внешние локальные и глобальные IP-адреса ссылаются ко внутреннему IP-адресу. Давайте посмотрим на конфигурацию ... show ip nat statistics - хорошая команда для проверки вашей конфигурации. Вы можете видеть, что внутренние и внешние интерфейсы поменялись местами. FastEthernet 0/0 должен быть inside, а FastEthernet 1/0 должен быть outside. NAT(config)#interface fastEthernet 0/0 NAT(config-if)#ip nat inside NAT(config)#interface fastEthernet 1/0 NAT(config-if)#ip nat outside Введем команды, которые позволяют исправить настройки, чтобы у нас были правильные внутренние и внешние интерфейсы. Трафик с хоста на веб-сервер теперь работает! Вот как должна выглядеть таблица трансляции NAT. Внутренний локальный IP-адрес - наш внутренний хост. Внутренний глобальный IP-адрес - это то, что мы настроили на внешней стороне нашего маршрутизатора NAT (FastEthernet 1/0). Внешний локальный и глобальный IP-адрес - наш веб-сервер ... проблема решена! Итог урока: убедитесь, что у вас имеются правильные внутренние и внешние интерфейсы. Урок 2 Та же топология, другая проблема! Опять пользователи нашей локальной сети жалуются, что они не могут связаться с веб-сервером. Давайте проверим наш маршрутизатор NAT: NAT#show ip nat translations Сначала мы проверим, транслирует ли маршрутизатор что-либо. Как видите, тихо ничего не происходит! Мы убедились, что внутренний и внешний интерфейсы были настроены правильно. Однако никаких трансляций не происходит. Внутренний источник был определен с помощью списка доступа 1. Давайте поближе рассмотрим этот ACL: Ааа, смотрите ... кажется, кто-то испортил ACL! Устраним эту неполадку: NAT(config)#no access-list 1 NAT(config)#access-list 1 permit 192.168.12.0 0.0.0.255 Мы создадим ACL так, чтобы он соответствовал 192.168.12.0/24. Теперь мы можем связаться с веб-сервером с нашего хоста. Мы видим Hits, если просмотреть NAT statistics. И я вижу трансляцию ... проблема решена! Итог урока: убедитесь, что вы используете правильный список доступа, соответствующий вашим внутренним хостам. Теперь почитатей продожение статьи про устранение неисправностей с DHCP.
img
232 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6, но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation). Что такое NAT Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16. Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес. И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей. Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес. Маршрутизатор NAT обычно работает на границе Stub-сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети. Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес. Терминология NAT В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям. При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим. NAT включает в себя четыре типа адресов: Внутренний локальный адрес (Inside local address); Внутренний глобальный адрес (Inside global address); Внешний местный адрес (Outside local address); Внешний глобальный адрес (Outside global address); При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом: Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT; Внешний адрес (Outside address) - адрес устройства назначения; Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети; Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети; Рассмотрим это на примере схемы. На рисунке ПК имеет внутренний локальный (Inside local) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local) адрес ПК транслируется в 208.141.16.5 (inside global). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4. Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами. Термины, inside и outside, объединены с терминами local и global, чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам. На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону. Внутренний локальный адрес (Inside local address) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес. Внутренний глобальный адрес (Inside global address) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address) на внутренний глобальный адрес (Inside global address). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5. Внешний глобальный адрес (Outside global address) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы. Внешний локальный адрес (Outside local address) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4 Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address) на 208.141.16.5. (Inside global address). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК. Типы NAT Существует три типа трансляции NAT: Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами; Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами; Port Address Translation (PAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload; Static NAT Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Статическая NAT таблица выглядит так: Dynamic NAT Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Динамическая NAT таблица выглядит так: Port Address Translation (PAT) PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT. С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP, оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты. Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы. Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет. Адрес источника (Source Address) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP. Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный. В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535. Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов. То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста. Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора. А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID. ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4. Преимущества и недостатки NAT NAT предоставляет множество преимуществ, в том числе: NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов; NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений; NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов; NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы; Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем: Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP. NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени; Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT; Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок; Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования; Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата; Мы разобрали основные принципы работы NAT. Хотите больше? Прочитайте нашу статью по настройке NAT на оборудовании Cisco.
img
Если вы начинающий веб-разработчик, возможно вы уже знаете, как работает всемирная сеть, по крайней мере, на базовом уровне. Но когда начинаете кому-то объяснять принцип работы веб-сайта, то терпите неудачу. Что такое IP-адрес? Как работает модель «клиент-сервер» на самом деле? В наши дни есть достаточно мощные фреймворки, которые можно использовать в своих проектах. Настолько мощные, что начинающие разработчики легко могут запутаться в принципах работы веб. Базовый веб-поиск Начнем с того места, где мы все были раньше: введите «www.github.com» в адресную строку браузера и просмотрите загрузку страницы. С первого взгляда может показаться, что тут происходит какая-то магия. Но давайте заглянем глубже. Определение частей web Из-за обилия жаргонных слов, понимание работы интернета поначалу пугает. Но к сожалению, для дальнейшего погружения в тему, придется разобраться с ними. Клиент: Приложение, например, Chrome или Firefox, которое запущено на компьютере и подключено к Интернету. Его основная роль состоит в том, чтобы принимать пользовательские команды и преобразовывать их в запросы к другому компьютеру, называемому веб-сервером. Хотя мы обычно используем браузер для доступа к Интернету, вы можете считать весь ваш компьютер «клиентом» модели клиент-сервер. Каждый клиентский компьютер имеет уникальный адрес, называемый IP-адресом, который другие компьютеры могут использовать для идентификации. Сервер: Компьютер, который подключен к Интернету и также имеет IP-адрес. Сервер ожидает запросов от других машин (например, клиента) и отвечает на них. В отличие от вашего компьютера (т.е. клиента), который также имеет IP-адрес, на сервере установлено и работает специальное серверное программное обеспечение, которое подсказывает ему, как реагировать на входящие запросы от вашего браузера. Основной функцией веб-сервера является хранение, обработка и доставка веб-страниц клиентам. Существует множество типов серверов, включая веб-серверы, серверы баз данных, файловые серверы, серверы приложений и многое другое. Подробнее про сервера можно прочитать тут IP-адрес: Internet Protocol Address. Числовой идентификатор устройства (компьютера, сервера, принтера, маршрутизатора и т.д.) в сети TCP/IP. Каждый компьютер в Интернете имеет IP-адрес, который он использует для идентификации и связи с другими компьютерами. IP-адреса имеют четыре набора чисел, разделенных десятичными точками (например, 244.155.65.2). Это называется «логический адрес». Для определения местоположения устройства в сети логический IP-адрес преобразуется в физический адрес программным обеспечением протокола TCP/IP. Этот физический адрес (т.е. MAC-адрес) встроен в оборудование. Подробнее про IP-адрес можно прочитать тут Интернет-провайдер: Интернет-провайдер. Интернет-провайдер - посредник между клиентом и серверами. Для типичного домовладельца ИП обычно является «кабельной компанией». Когда браузер получает от вас запрос на переход к www.github.com, он не знает, где искать www.github.com. Это задание поставщика услуг Интернета - выполнить поиск DNS (системы доменных имен), чтобы спросить, на какой IP-адрес настроен сайт, который вы пытаетесь посетить. DNS: система доменных имен. Распределенная база данных, которая хранит соответствие доменных имен компьютеров и их IP-адресов в Интернете. Не беспокойтесь о том, как сейчас работает «распределенная база данных»: просто знайте, что DNS существует, чтобы пользователи могли вводить www.github.com вместо IP-адреса. Подробнее про DNS можно прочитать тут Имя домена: используется для идентификации одного или нескольких IP-адресов. Пользователи используют доменное имя (например, www.github.com) для доступа к веб-сайту в Интернете. При вводе имени домена в обозреватель DNS использует его для поиска соответствующего IP-адреса данного веб-сайта. TCP/IP: Наиболее широко используется протокол связи. «Протокол» - это просто стандартный набор правил для чего-либо. TCP/IP используется в качестве стандарта для передачи данных по сетям. Подробнее про TCP/IP можно прочитать тут Номер порта: 16-разрядное целое число, которое идентифицирует определенный порт на сервере и всегда связано с IP-адресом. Он служит способом идентификации конкретного процесса на сервере, на который могут пересылаться сетевые запросы. Хост: Компьютер, подключенный к сети - это может быть клиент, сервер или любой другой тип устройства. Каждый хост имеет уникальный IP-адрес. Для веб-сайта, как www.google.com, хост может быть веб-сервером, который обслуживает страницы для веб-сайта. Часто между хостом и сервером происходит какая-то путаница, но заметьте, что это две разные вещи. Серверы - это тип хоста - это конкретная машина. С другой стороны, хост может ссылаться на всю организацию, которая предоставляет службу хостинга для обслуживания нескольких веб-серверов. В этом смысле можно запустить сервер с хоста. HTTP: протокол передачи гипертекста. Протокол, используемый веб-браузерами и веб-серверами для взаимодействия друг с другом через Интернет. URL: URL-адреса идентифицируют конкретный веб-ресурс. Простой пример https://github.com/someone. URL указывает протокол («https»), имя хоста (github.com) и имя файла (чья-то страница профиля). Пользователь может получить веб-ресурс, идентифицированный по этому URL-адресу, через HTTP от сетевого хоста, доменное имя которого github.com. Подробнее про URL можно прочитать тут Переход от кода к веб-странице Теперь у нас есть необходимая база, чтобы разобраться, что происходит за кулисами, когда мы вводим в строку поиска адрес Github: 1) Введите URL-адрес в браузере 2) Браузер анализирует информацию, содержащуюся в URL. Сюда входят протокол («https»), доменное имя («github.com») и ресурс («/»). В этом случае после «.com» нет ничего, что указывало бы на конкретный ресурс, поэтому браузер знает, как получить только главную (индексную) страницу. 3) Браузер связывается с поставщиком услуг Интернета, чтобы выполнить DNS-поиск IP-адреса для веб-сервера, на котором размещен веб-сервер www.github.com. Служба DNS сначала свяжется с корневым сервером имен, который просматривает https://www.github.com и отвечает IP-адресом сервера имен для домена верхнего уровня .com. Получив этот адрес служба DNS выполняет еще один запрос на сервер имен, который отвечает за домен .com и запрашивает адрес https://www.github.com. 4) Получив IP-адрес сервера назначения, Интернет-провайдер отправляет его в веб-браузер. 5) Ваш браузер берет IP-адрес и заданный номер порта из URL (протокол HTTP по умолчанию - порт 80, а HTTPS - порт 443) и открывает TCP-сокет. На этом этапе связь между веб-браузером и веб-сервер наконец-то установлена. 6) Ваш веб-браузер отправляет HTTP-запрос на веб-сервер главной HTML-страницы www.github.com. 7) Веб-сервер получает запрос и ищет эту HTML-страницу. Если страница существует, веб-сервер подготавливает ответ и отправляет его обратно в браузер. Если сервер не может найти запрошенную страницу, он отправляет сообщение об ошибке HTTP 404 (тот самый Error 404 Not Found), которое означает «Страница не найдена». 8) Ваш веб-браузер берет HTML-страницу, которую он получает, а затем анализирует ее, делая полный обзор, чтобы найти другие ресурсы, которые перечислены в ней: это адреса изображений, CSS файлов, JavaScript файлов и т.д. 9) Для каждого перечисленного ресурса браузер повторяет весь указанный выше процесс, делая дополнительные HTTP-запросы на сервер для каждого ресурса. 10) После того, как браузер закончит загрузку всех других ресурсов, перечисленных на странице HTML, страница будет загружена в окно браузера и соединение будет закрыто. Пересечение Интернет-пропасти Стоит отметить, как информация передается при запросе информации. Когда вы делаете запрос, эта информация разбивается на множество крошечных порций, называемых пакетами. Каждый пакет маркируется заголовком TCP, который включает в себя номера портов источника и назначения, и заголовком IP, который включает в себя IP-адреса источника и назначения. Затем пакет передается через сеть Ethernet, WiFi или сотовую сеть. Пакет может перемещаться по любому маршруту и проходить столько транзитных участков, сколько необходимо для того, чтобы добраться до конечного пункта назначения. И пакеты передаются отнюдь не в том, порядке, в котором они сформировались. Например, первый пакет может прийти третьим, а последний первым. Нам на самом деле все равно, как пакеты туда попадут - важно только то, что они доберутся до места назначения в целости и сохранности! Как только пакеты достигают места назначения, они снова собираются и доставляются как единое целое. Так как же все пакеты знают, как добраться до места назначения без потери? Ответ: TCP/IP. TCP/IP - это двухкомпонентная система, функционирующая как фундаментальная «система управления» Интернета. IP означает Интернет-протокол; его задачей является отправка и маршрутизация пакетов на другие компьютеры с использованием заголовков IP (т.е. IP-адресов) каждого пакета. Вторая часть, протокол управления передачей (TCP), отвечает за разбиение сообщения или файла на меньшие пакеты, маршрутизацию пакетов к соответствующему приложению на целевом компьютере с использованием заголовков TCP, повторную отправку пакетов, если они теряются в пути, и повторную сборку пакетов в правильном порядке, как только они достигают другого конца. Получение финальной картины Но подождите - работа еще не закончена! Теперь, когда ваш браузер имеет ресурсы, составляющие веб-сайт (HTML, CSS, JavaScript, изображения и т.д.), он должен пройти несколько шагов, чтобы представить вам ресурсы в виде читабельной для нас с вами веб-страницы. В браузере имеется механизм визуализации, отвечающий за отображение содержимого. Обработчик рендеринга получает содержимое ресурсов в небольших фрагментах. Затем существует алгоритм синтаксического анализа HTML, который сообщает браузеру, как анализировать ресурсы. После анализа создается древовидная структура элементов DOM. DOM (Document Object Model) обозначает объектную модель документа и является условным обозначением для представления объектов, расположенных в HTML-документе. Этими объектами - или «узлами» - каждого документа можно управлять с помощью таких языков сценариев, как JavaScript. После построения дерева DOM анализируются таблицы стилей, чтобы понять, как определить стиль каждого узла. Используя эту информацию, браузер проходит вниз по узлам DOM и вычисляет стиль CSS, положение, координаты и т.д. для каждого узла. После того как в браузере появятся узлы DOM и их стили, он наконец готов соответствующим образом нарисовать страницу на экране. Результат – все, что вы когда-либо просматривали в интернете. Итог Интернет - это комплексная вещь, но вы только что закончили сложную часть! О структуре веб-приложений мы расскажем в нашей следующей статье.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59