По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Sup! Сейчас я объясню тебе, что такое фаэрволл, он же брандмауэр и межсетевой экран. Давай сразу учиться говорить правильно! Поэтому запомни - не брандмаузер, не браузер, не фаерболл и поверь мне - никто в профессиональной среде не говорит "огненная стена" или "стена огня". Гуд, мы стали чуточку грамотнее. Видео: Что такое Firewall? | Простыми словами за 5 минут Почему он так странно называется? Всё дело в том, что это название пришло в мир сетевых технологий откуда бы вы, думали? Из пожарной безопасности, где фаэрволлом называется стена здания, из негорючих материалов, предназначенная для препятствования распространению огня на соседние части здания или другие строения. Фаэрволл, наряду с коммутаторами и роутерами является активным сетевым устройством и обеспечивает безопасность инфраструктуры. Он работает на 3 уровне модели OSI и защищает локальную сеть от неавторизованного доступа из внешних недоверенных сетей, таких как например этот ваш Интернет. В Интернете полно ужасов, там много хакеров, вредоносных файлов и ресурсов, там постоянно кто-то кого-то пытается взломать и происходят всякие кибератаки. Мы же не хотим, чтобы всё это беспрепятственно проникало в нашу сеть? В то же время, мы хотим, чтобы нормальный трафик мог свободно как входить в нашу сеть, так и покидать её. Тут нам и помогает Firewall. Он блокирует нежелательный трафик (как на вход, так и на выход) и пропускает разрешенный трафик. Делает он это с помощью специальных правил, которые называются списками контроля доступа или ACL. В этих правилах определяется какой трафик может входить в сеть и покидать её, а какой - нет. Ну, ОК, а кто определяет, что можно, а что нельзя? Сетевой администратор. Он настраивает списки контроля доступа для обеспечения прохождения нужного трафика и блокировки нежелательного. Так что, если ты не можешь смотреть ютубчик и сидеть в одноклассниках с рабочего компа - это сисадмин постарался! Самое простое, что может сделать сисадмин чтобы запретить доступ к ресурсу - это настроить ACL на блокировку IP адреса этого ресурса.А что если у ресурса много IP адресов и они постоянно меняются? Не беда - фаэрволл может решать что делать с трафиком не только на основе IP, но ещё портов, доменных имён, протоколов, и даже приложений[2]. Рассмотрим простенький пример Допустим сисадмин не нашёл ответа на свой вопрос в нашей базе знаний wiki.merionet.ru и решил заблочить её на фаэрволле для всего IT отдела, который живет в подсети 10.15.15.0/24. Для этого он создал примерно такой ACL: Action = DENY Source IP = 10.15.15.0/24 Destination =wiki.merionet.ru Destination Port = ANY Теперь инженер Фёдор с адресом 10.15.15.5 не может прочитать как настроить BGP на нашем ресурсе. В тоже время для отдела разработки, живущего в подсети 10.15.20.0/24 таких запретов нет, поэтому разработчик Илья спокойно может читать наши статьи дальше. Ну или такой пример - сисадмин Василий узнал, что бухгалтер Ирина использует приложение TikTok и снимает видео в рабочее время, загружая свои танцы под Cardi B через офисную вай-фай сеть. Вернувшись на рабочее место, Василий настроил блокировку приложения TikTok для всех Wi-Fi сетей в офисе и получил премию. Нужно сказать, что такое возможно только если фаэрволл Васи поддерживает определение приложений в трафике. Обычно такие фичи есть только у крутых Stateful фаэрволлов следующего поколения - NGFW (Next Generation Firewall) Воу, воу - что за Stateful? Есть два типа фаэрволов - Stateful и Stateless. Stateful фаэрволлы более крутые. Они понимают весь контекст траффика и следят за состоянием соединения. Если Stateful фаэрволл получает пакет, он также проверяет метаданные этого пакета, такие как порты и IP-адреса, принадлежащие источнику и получателю, длину пакета, информацию уровня 3, флаги и многое другое. Таким образом, Stateful фаэрволл анализирует пакет в потоке и может принимать решения основываясь на множестве параметров. Stateless фаэрволлы более простые, они исследуют каждый пришедший пакет изолированно и принимают решение на основании того, что сказано ACL. А на содержимое пакета и что было до него им пофиг. Кстати, мы немного слукавили, когда сказали, что фаэрволл - это устройство. На самом деле, они бывают разными. Это может быть: крутая железяка, которая стоит как машина, простенький девайс, у которого есть функции фаэрволла, как например - домашний роутер, программное обеспечение, которое устанавливается на компьюстер, виртуальная машина или вообще - облачное приложение. Программное обеспечение с функциями фаэрволла для компа называется Host-Based firewall. Его задача - защита одного хоста, на которое оно установлено. Например, почти все антивирусы имеют функции хостовых фаэрволлов. Почти во всех остальных случаях фаэрволл защищает всю сеть. Таким образом, обеспечивается двойной уровень защиты, на уровне сети и на уровне хоста. Фаэрволл - это важнейший элемент любой сети, к его настройке следует относиться предельно внимательно, в противном случае можно поставить под угрозу безопасность всей инфраструктуры. Кстати, если ты хочешь реально хочешь научиться общаться с сетевыми железками, освоить настройку сетевых протоколов и построить свою собственную сеть, то не пропусти наш большой курс по сетевым технологиям: Учиться! Кстати, еще, по промокоду PRIVET_YA_PODSYADU ты получишь скидку 10% на весь ассортимент нашего магазина shop.merionet.ru! А теперь вопрос - чтобы заблокировать facebook.com достаточно ли будет stateless firewall или необходим stateful и почему? Ответ пиши в комент.
img
Выходим на новый уровень. Для изучения следующей темы вы уже должны хорошо понимать связующее дерево. Связующее дерево (Spanning Tree Protocol STP) — это важная тема. Есть много вещей, которые могут пойти не так, и в этой статье мы рассмотрим ряд инструментов, которые мы можем использовать для защиты нашей топологии связующего дерева. Для профессионалов PortFast: мы видели это в статье о spanning tree и rapid spanning tree. Он настроит порт доступа как пограничный порт, поэтому он переходит в режим forwarding немедленно. BPDU Guard: это отключит (err-disable) интерфейс, который имеет настроенный PortFast, если он получает BPDU. BPDUFilter: это будет подавлять BPDU на интерфейсах. Root Guard: это предотвратит превращение соседнего коммутатора в корневой мост, даже если он имеет лучший идентификатор моста. UplinkFast: мы видели это в статье о связующем дереве. Он улучшает время конвергенции. BackboneFast: мы также видели это в статье о связующем дереве. Оно улучшает время конвергенции, если у вас есть сбой косвенной связи. UplinkFast и BackboneFast не требуются для rapid spanning tree, поскольку оно уже реализовано по умолчанию. Мы начнем с BPDUguard: В топологии выше мы имеем идеально работающую топологию остовного дерева. По умолчанию связующее дерево будет отправлять и получать BPDU на всех интерфейсах. В нашем примере у нас есть компьютер, подключенный на интерфейсе fa0/2 коммутатора B. Есть кто-то, кто с враждебными намерениями мог бы запустить инструмент, который сгенерирует BPDU с превосходящим ID моста. Что же произойдет- так это то, что наши коммутаторы будут считать, что корневой мост теперь может быть достигнут через коммутатор B, и у нас будет повторный расчет связующего дерева. Звучит не очень хорошо, правда? Можно поставить человека (хакера) в середине топологии для атаки так, чтобы никто не знал. Представьте себе, что хакер подключает свой компьютер к двум коммутаторам. Если хакер станет корневым мостом, то весь трафик от коммутатора А или коммутатора C к коммутатору В будет проходить через него. Он запустит Wireshark и подождет, пока произойдет чудо. BPDUguard гарантирует, что, когда мы получаем BPDU на интерфейс, интерфейс перейдет в режим err-disable. Чтобы продемонстрировать работу BPDUguard будем использовать два коммутатора. Настроем интерфейс fa0/16 коммутатора B так, что он перейдет в режим err-disable, если он получит BPDU от коммутатора C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree bpduguard enable Вот как вы включаете его в интерфейсе. Имейте в виду, что обычно вы никогда не будете делать это между коммутаторами. Вы должны настроить это на интерфейсах в режиме доступа, которые подключаются к компьютерам. А-а... вот и наш интерфейс. SwitchB(config-if)#no spanning-tree bpduguard SwitchB(config-if)#shutdown SwitchB(config-if)#no shutdown Избавиться от BPDUguard можно используя команды shut/no shut, чтобы сделать интерфейс снова рабочим. SwitchB(config)#spanning-tree portfast bpduguard Вы также можете использовать команду spanning-tree portfast bpduguard. Это позволит глобально активировать BPDUguard на всех интерфейсах, которые имеют включенный portfast. SwitchB(config)#spanning-tree portfast default Portfast также может быть включен глобально для всех интерфейсов, работающих в режиме доступа. Это полезная команда, позволяющая проверить свою конфигурацию. Вы видите, что portfast и BPDUGuard были включены глобально. BPDUGuard переведет интерфейс в режим err-disable. Кроме того, можно фильтровать сообщения BPDU с помощью BPDUfilter. BPDUfilter может быть настроен глобально или на уровне интерфейса и есть разница: Глобальный: если вы включите bpdufilter глобально, любой интерфейс с включенным portfast станет стандартным портом. Интерфейс: если вы включите BPDUfilter на интерфейсе, он будет игнорировать входящие BPDU и не будет отправлять никаких BPDU. Вы должны быть осторожны, когда включаете BPDUfilter на интерфейсах. Вы можете использовать его на интерфейсах в режиме доступа, которые подключаются к компьютерам, но убедитесь, что вы никогда не настраиваете его на интерфейсах, подключенных к другим коммутаторам. Если вы это сделаете, вы можете получить цикл. Для демонстрации работы BPDUfilter мы будем снова использовать коммутатор B и коммутатор C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable Он перестанет посылать BPDU и будет игнорировать все, что будет получено. SwitchB#debug spanning-tree bpdu Вы не увидите никаких интересных сообщений, но если вы включите отладку BPDU, то заметите, что он больше не отправляет никаких BPDU. Если вы хотите, вы также можете включить отладку BPDU на коммутаторе C, и вы увидите, что нет ничего от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable Давайте избавимся от команды BPDUfilter на уровне интерфейса. SwitchB(config)#spanning-tree portfast bpdufilter default Вы также можете использовать глобальную команду для BPDUfilter. Это позволит включить BPDUfilter на всех интерфейсах, которые имеют portfast. Еще один вариант, с помощью которого мы можем защитить наше связующее дерево, - это использовать RootGuard. Проще говоря, RootGuard позаботится о том, чтобы вы не принимали определенный коммутатор в качестве корневого моста. BPDU отправляются и обрабатываются нормально, но, если коммутатор внезапно отправляет BPDU с идентификатором верхнего моста, вы не будете принимать его в качестве корневого моста. Обычно коммутатор D становится корневым мостом, потому что у него есть лучший идентификатор моста, к счастью, у нас есть RootGuard на коммутатое C, так что этого не произойдет! Рассмотрим с вами конфигурацию с коммутатором B и коммутатором C. SwitchB(config)#spanning-tree vlan 1 priority 4096 Давайте убедимся, что коммутатор C не является корневым мостом. Вот как мы включаем RootGuard на интерфейсе. SwitchB#debug spanning-tree events Spanning Tree event debugging is on Не забудьте включить отладку, если вы хотите увидеть события. SwitchC(config)#spanning-tree vlan 1 priority 0 Давайте перенастроим коммутатор B, изменив приоритет на наименьшее возможное значение 0 на коммутаторе C. Он теперь должен стать корневым мостом. Вот так коммутатор B не будет принимать коммутатор C в качестве корневого моста. Это заблокирует интерфейс для этой VLAN. Вот еще одна полезная команда, чтобы проверить, работает ли RootGuard. Связующее дерево становится все более безопасным с каждой минутой! Однако есть еще одна вещь, о которой мы должны подумать… Если вы когда-либо использовали волоконные кабели, вы могли бы заметить, что существует другой разъем для передачи и приема трафика. Если один из кабелей (передающий или принимающий) выйдет из строя, мы получим однонаправленный сбой связи, и это может привести к петлям связующего дерева. Существует два протокола, которые могут решить эту проблему: LoopGuard UDLD Давайте начнем с того, что внимательно рассмотрим, что произойдет, если у нас произойдет сбой однонаправленной связи. Представьте себе, что между коммутаторами волоконно-оптические соединения. На самом деле имеется другой разъем для передачи и приема. Коммутатор C получает BPDU от коммутатора B, и в результате интерфейс стал альтернативным портом и находится в режиме блокировки. Теперь что-то идет не так... transmit коннектор на коммутаторе B к коммутатору C был съеден мышами. В результате коммутатор C не получает никаких BPDU от коммутатора B, но он все еще может отправлять трафик для переключения между ними. Поскольку коммутатор C больше не получает BPDU на свой альтернативный порт, он перейдет в forwarding режим. Теперь у нас есть one way loop (петля в один конец), как указано зеленой стрелкой. Один из методов, который мы можем использовать для решения нашего однонаправленного сбоя связи — это настройка LoopGuard. Когда коммутатор отправляет, но не получает BPDU на интерфейсе, LoopGuard поместит интерфейс в состояние несогласованности цикла и заблокирует весь трафик! Мы снова будем использовать эту топологию для демонстрации LoopGuard. SwitchA(config)#spanning-tree loopguard default SwitchB(config)#spanning-tree loopguard default SwitchC(config)#spanning-tree loopguard default Используйте команду spanning-tree loopguard по умолчанию, чтобы включить LoopGuard глобально SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable В примере у нас нет никаких волоконных разъемов, поэтому мы не сможем создать однонаправленный сбой связи. Однако мы можем смоделировать его с помощью BPDUfilter на интерфейсе SwitchB fa0/16. Коммутатор C больше не будет получать никаких BPDU на свой альтернативный порт, что заставит его перейти в режим переадресации. Обычно это вызвало бы петлю, но, к счастью, у нас есть настроенный LoopGuard. Вы можете увидеть это сообщение об ошибке, появляющееся в вашей консоли. Проблема решена! SwitchC(config-if)#spanning-tree guard loop Если вы не хотите настраивать LoopGuard глобально, вы т можете сделать это на уровне интерфейса. Другой протокол, который мы можем использовать для борьбы с однонаправленными сбоями связи, называется UDLD (UniDirectional Link Detection). Этот протокол не является частью инструментария связующего дерева, но он помогает нам предотвратить циклы. Проще говоря, UDLD — это протокол второго уровня, который работает как механизм keepalive. Вы посылаете приветственные сообщения, вы их получаете, и все прекрасно. Как только вы все еще посылаете приветственные сообщения, но больше их не получаете, вы понимаете, что что-то не так, и мы блокируем интерфейс. Убедитесь, что вы отключили LoopGuard перед работой с UDLD. Мы будем использовать ту же топологию для демонстрации UDLD. Существует несколько способов настройки UDLD. Вы можете сделать это глобально с помощью команды udld, но это активирует только UDLD для оптоволоконных линий связи! Существует два варианта для UDLD: Normal (default) Aggressive Когда вы устанавливаете UDLD в нормальное состояние, он помечает порт как неопределенный, но не закрывает интерфейс, когда что-то не так. Это используется только для того, чтобы «информировать» вас, но это не предотвратит циклы. Агрессивный - это лучшее решение, когда пропадает связь с соседом. Он будет посылать кадр UDLD 8 раз в секунду. Если сосед не отвечает, интерфейс будет переведен в режим errdisable. SwitchB(config)#interface fa0/16 SwitchB(config-if)#udld port aggressive SwitchC(config)#interface fa0/16 SwitchC(config-if)#udld port aggressive Мы будем использовать коммутатор B и C, чтобы продемонстрировать UDLD. Будем использовать агрессивный режим, чтобы мы могли видеть, что интерфейс отключается, когда что-то не так. Если вы хотите увидеть, что UDLD работает, вы можете попробовать выполнить отладку. Теперь самое сложное будет имитировать однонаправленный сбой связи. LoopGuard был проще, потому что он был основан на BPDUs. UDLD запускает свой собственный протокол уровня 2, используя собственный MAC-адрес 0100.0ccc.сссс. SwitchC(config)#mac access-list extended UDLD-FILTER SwitchC(config-ext-macl)#deny any host 0100.0ccc.cccc SwitchC(config-ext-macl)#permit any any SwitchC(config-ext-macl)#exit SwitchC(config)#interface fa0/16 SwitchC(config-if)#mac access-group UDLD-FILTER in Это творческий способ создавать проблемы. При фильтрации MAC-адреса UDLD он будет думать, что существует сбой однонаправленной связи! Вы увидите много отладочной информации, но конечным результатом будет то, что порт теперь находится в состоянии err-disable. Вы можете проверить это с помощью команды show udld. LoopGuard и UDLD решают одну и ту же проблему: однонаправленные сбои связи. Они частично пересекаются, но есть ряд различий, вот общий обзор: LoopGuardUDLDНастройкиГлобально/на портуГлобально (для оптики)/на портуVLAN?ДаНет, на портуАвтосохранениеДаДа, но вам нужно настроить errdisable timeout.Защита от сбоев STP из-за однонаправленных связейДа - нужно включить его на всех корневых и альтернативных портахДа - нужно включить его на всех интерфейсах.Защита от сбоев STP из-за сбоев программного обеспечения (нет отправки BPDU)ДаНетЗащита от неправильного подключения (коммутационный оптический приемопередающий разъем)НетДа Есть еще одна последняя тема, которую хотелось бы объяснить, это не протокол связующего дерева, но речь идет о избыточных ссылках, поэтому я оставлю ее здесь. Это называется FlexLinks. Вот в чем дело: при настройке FlexLinks у вас будет активный и резервный интерфейс. Мы настроим это на коммутаторе C: Fa0/14 будет активным интерфейсом. Fa0/16 будет интерфейс резервного копирования (этот блокируется!). При настройке интерфейсов в качестве FlexLinks они не будут отправлять BPDU. Нет никакого способа обнаружить петли, потому что мы не запускаем на них связующее дерево. Всякий раз, когда наш активный интерфейс выходит из строя, резервный интерфейс заменяет его. SwitchC(config)#interface fa0/14 SwitchC(config-if)#switchport backup interface fa0/16 Именно так мы делаем интерфейс fa0/16 резервной копией интерфейса fa0/14. Вы можете видеть, что связующее дерево отключается для этих интерфейсов. Проверьте нашу конфигурацию с помощью команды show interfaces switchport backup. Вот и все, что нужно было сделать. Это интересное решение, потому что нам больше не нужно связующее дерево. Ведь в любой момент времени активен только один интерфейс. SwitchC(config)#interface f0/14 SwitchC(config-if)#shutdown Давайте закроем активный интерфейс. Вы можете видеть, что fa0/16 стал активным. Вот и все.
img
В этой статье мы рассмотрим IPv6 (Internet Protocol version 6), причины, по которым он нам нужен, а также следующий аспект: различия с IPv4. Пока существует Интернет, используется протокол IPv4 для адресации и маршрутизации. Однако проблема с IPv4 заключается в том, что у нас закончились адреса. Так что же случилось с IPv4? Что же пошло не так? У нас есть 32 бита, которые дают нам 4 294 467 295 IP-адресов. Когда появился Интернет, мы получили сети класса А, В или С. Класс С дает нам блок из 256 IP-адресов, класс B - это 65.535 IP-адресов, а класс A даже 16 777 216 IP-адресов. Крупные компании, такие как Apple, Microsoft, IBM и др. имеют одну или несколько сетей класса А. Но действительно ли им нужно 16 миллионов IP-адресов? Большинство из этих IP-адресов не были использованы. Поэтому мы начали использовать VLSM, чтобы использовать любую маску подсети, которая нам нравится, и создавать более мелкие подсети, а не только сети класса A, B или C. У нас также имеется NAT и PAT, следовательно, мы имеем много частных IP-адресов за одним публичным IP-адресом. Тем не менее интернет вырос так, как никто не ожидал 20 лет назад. Несмотря на все наши крутые трюки, такие как VLSM и NAT/PAT, нам нужно было больше IP-адресов, и поэтому родился IPv6. А что случилось с IPv5? Хороший вопрос ... IP-версия 5 была использована для экспериментального проекта под названием "Протокол интернет-потока". Он определен в RFC, если вас интересуют исторические причины: http://www.faqs.org/rfcs/rfc1819.html IPv6 имеет 128-битные адреса по сравнению с нашими 32-битными IPv4-адресами. Имейте в виду, что каждый дополнительный бит удваивает количество IP-адресов. Таким образом мы переходим от 4 миллиардов к 8 миллиардам, 16,32,64 и т. д. Продолжайте удвоение, пока не достигнете 128-битного уровня. Просто вы увидите, сколько IPv6-адресов это даст нам: 340,282,366,920,938,463,463,374,607,431,768,211,456; Можем ли мы вообще произнести это? Давайте попробуем вот это: 340 - ундециллионов; 282 - дециллионов; 366 - нониллионов; 920 - октиллионов; 938 - септиллионов; 463 - секстиллионов; 463 - квинтильонов; 374 - квадрильонов; 607 - триллионов; 431 - биллионов; 768 - миллионов; 211 - тысяч; 456. Это умопомрачительно... это дает нам достаточное количество IP-адресов для сетей на Земле, Луне, Марсе и остальной Вселенной. IPv6-адреса записываются в шестнадцатеричном формате. IPv4 и IPv6 несовместимы друг с другом, поэтому многие протоколы были обновлены или заменены для работы с IPv6, вот некоторые примеры: OSPF был обновлен с версии 2 (IPv4) до версии 3 (IPv6); ICMP был обновлен до версии ICMP 6; ARP был заменен на NDP (Neighborhood Discovery Protocol). Заголовок пакета IPv6 содержит адреса источника и назначения, но по сравнению с IPv4 он стал намного проще: Вместо того чтобы уже добавлять все поля в заголовок, заголовок IPv6 использует "следующий заголовок", который ссылается на необязательные заголовки. Поскольку заголовок намного проще, маршрутизаторам придется выполнять меньше работы. А как насчет маршрутизации? Есть ли разница между IPv4 и IPv6? Давайте рассмотрим варианты маршрутизации: Static Routing; RIPng; OSPFv3; MP-BGP4; EIGRP. Вы все еще можете использовать статическую маршрутизацию, как и в IPv4, ничего нового здесь нет. RIP был обновлен и теперь называется RIPng или RIP Next Generation. OSPF для IPv4 на самом деле является версией 2, а для IPv6 у нас есть версия 3. Это отдельный протокол, он работает только на IPv6. Есть только незначительные изменения, внесенные в OSPFv3. BGP (Border Gateway Protocol) - это протокол маршрутизации, который объединяет Интернет вместе.MP-BGP расшифровывается как Multi-Protocol BGP, и он может маршрутизировать IPv6. EIGRP также поддерживает IPv6. Просто имейте в виду, что OSPF и EIGRP поддерживают IPv6, но это отдельные протоколы. Если у вас есть сеть с IPv4 и IPv6, вы будете запускать протокол маршрутизации для IPv4 и еще один для IPv6. Запуск IPv4 и IPv6 одновременно называется двойным стеком. Поскольку эти два протокола несовместимы, в будущем будет происходить переход с IPv4 на IPv6. Это означает, что вы будете запускать оба протокола в своей сети и, возможно, однажды вы сможете отключить IPv4, так как весь интернет будет настроен на IPv6. Давайте взглянем на формат IPv6-адреса: 2041:0000:140F:0000:0000:0000:875B:131B Во-первых, он шестнадцатеричный и гораздо длиннее, чем IPv4-адрес. Существует восемь частей, состоящих из 4 шестнадцатеричных цифр каждая, поэтому 128-битный адрес может быть представлен 32-битными шестнадцатеричными символами. Если вы забыли, как работает шестнадцатеричный код, взгляните на таблицу ниже: В шестнадцатеричной системе счисления мы считаем от 0 до F точно так же, как мы считали бы от 0 до 15 в десятичной системе счисления: A = 10; B = 11; C = 12; D = 13; E = 14; F = 15. Использование шестнадцатеричного кода помогает сделать наши адреса короче, но ввод адреса IPv6 - это все еще большая работа. Представьте себе, что вы звоните другу и спрашиваете его, может ли он пинговать IPv6-адрес 2041:0000:140F:0000:0000:0000:875B:131B, чтобы узнать, может ли он достучаться до своего шлюза по умолчанию. Чтобы облегчить нам работу с такими адресами, можно сделать IPv6-адреса короче. Вот пример: Оригинальный: 2041: 0000:140F:0000:0000:0000:875B:131B Сокращенный: 2041: 0000:140F:: 875B:131B Если есть строка нулей, вы можете удалить их, заменив их двойным двоеточием (::). В приведенном выше IPv6-адресе удалены нули, сделав адрес немного короче. Вы можете сделать это только один раз. Мы можем сделать этот IPv6 адрес еще короче используя другой трюк: Сокращенный: 2041: 0000:140F:: 875B:131B; Еще короче: 2041:0:140F:: 875B:131B Если у вас есть блок с 4 нулями, вы можете удалить их и оставить там только один ноль. Мы также можем удалить все впередистоящие нули: Оригинальный: 2001:0001:0002:0003:0004:0005:0006:0007; Сокращенный: 2001:1:2:3:4:5:6:7 Подытожим небольшие правила: Строку нулей можно удалить, оставив только двоеточие (::). Вы можете сделать только это однажды.; 4 нуля можно удалить, оставив только один ноль. Впередиидущие нули могут быть удалены в пределах одного блока.; Вы не можете удалить все нули, иначе ваше устройство, работающее с IPv6 не поймет, где заполнить нули, чтобы снова сделать его 128-битным.; Вычисление префикса IPV6 мы пропустим, так как ресурсов, рассказывающих об этом в сети Интернет, специальных книгах полно. Нет смысла повторяться. Потребуется некоторое время, чтобы привыкнуть к IPv6-адресации и поиску префиксов, но чем больше вы этим занимаетесь, тем дальше становиться проще. В оставшейся части этой статьи мы еще немного поговорим о различных типах адресации IPv6. IPv4-адреса организованы с помощью "системы классов", где класс A, B и C предназначены для одноадресных IP-адресов, а класс D-для многоадресной передачи. Большинство IP-адресов в этих классах являются публичными IP-адресами, а некоторые-частными IP-адресами, предназначенными для наших внутренних сетей. Нет такой вещи, как классы для IPv6, но IANA действительно зарезервировал определенные диапазоны IPv6 для конкретных целей. У нас также есть частные и публичные IPv6-адреса. Первоначально идея IPv4 заключалась в том, что каждый хост, подключенный к Интернету, будет иметь общедоступный IP-адрес. Каждая компания получит сеть класса А, В или С, и сетевые инженеры в компании будут дополнительно подсоединять ее так, чтобы каждый хост и сетевое устройство имели общедоступный IP-адрес. Проблема, однако, заключается в том, что адресное пространство IPv4 было слишком маленьким, и выдавать полные сети A, B или C было не очень разумно. Даже если вам требуется только небольшое количество IP-адресов, вы все равно получите сеть класса C, которая дает вам 254 пригодных для использования IP-адреса. Компания, которой требуется 2.000 IP-адресов, получит класс B, который дает вам более 65.000 IP-адресов. Поскольку у нас заканчивались IP-адреса, мы начали использовать такие вещи, как VLSM (избавляясь от идеи класса A, B, C) и настраивали частные IP-адреса в наших локальных сетях, а вместо этого использовали NAT/PAT. Протокол IPv6 предлагает два варианта для одноадресной рассылки: Global Unicast; Unique Local. Раньше существовал третий диапазон адресов, называемый "site local", который начинался с FEC0:: / 10. Этот диапазон изначально предназначался для использования во внутренних сетях, но был удален из стандарта IPv6. Global Unicast передачи IPv6 похожи на публичные IPv4-адреса. Каждая компания, которая хочет подключиться к интернету с помощью IPv6, получит блок IPv6-адресов, которые они могут дополнительно разделить на более мелкие префиксы, чтобы все их устройства имели уникальный IPv6-адрес. Зарезервированный блок называется префиксом глобальной маршрутизации. Поскольку адресное пространство IPv6 настолько велико, каждый может получить префикс глобальной маршрутизации. Давайте посмотрим, как назначаются префиксы IPv6-адресов. Допустим, компания получает префикс 2001:828:105:45::/64. Как они его получили? Мы пройдемся по этой картине сверху вниз: IANA отвечает за распределение всех префиксов IPv6. Они будут назначать реестрам различные блоки. ARIN - для Северной Америки, RIPE -для Европы, Ближнего Востока и Центральной Азии. Всего таких реестров насчитывается 5. IANA присваивает 2001: 800:: /23 RIPE и 2001: 0400::/23 ARIN (и многие другие префиксы).; ISP, который попадает под реестр RIPE, запрашивает блок пространства IPv6. Они получают от них 2001: 0828:: / 32, которые в дальнейшем могут использовать для клиентов.; ISP дополнительно подсоединит свое адресное пространство 2001:0828::/32 для своих пользователей. В этом примере клиент получает префикс 2001:828:105::/48.; IANA зарезервировала определенные диапазоны адресов IPv6 для различных целей, точно так же, как это было сделано для IPv4. Первоначально они зарезервировали IPv6-адреса, которые с шестнадцатеричными 2 или 3 являются global unicast адресами. Это можно записать как 2000:: / 3. В настоящее время они используют все для global unicast рассылки, которая не зарезервирована для других целей. Некоторые из зарезервированных префиксов являются: FD: Unique Local; FF: Multicast; FE80: Link-Local. Обсудим префиксы local и link-local В моем примере клиент получил 2001: 828:105:: / 48 от провайдера, но прежде чем я смогу что-либо сделать с этим префиксом, мне придется разбить на подсети его для различных VLAN и point-to-point соединений, которые у меня могут быть. Подсети для IPv6 - это примерно то же самое, что и для IPv4, но математика в большинстве случаев проще. Поскольку адресное пространство настолько велико, почти все используют префикс /64 для подсетей. Нет смысла использовать меньшие подсети. При использовании IPv4 у нас была часть "сеть" и "хост", а класс A, B или C определяет, сколько битов мы используем для сетевой части: Когда мы используем подсети в IPv4 мы берем дополнительные биты от части хоста для создания большего количества подсетей: И, конечно, в результате у нас будет меньше хостов на подсеть. Подсети для IPv6 используют аналогичную структуру, которая выглядит следующим образом: Префикс global routing был назначен вам провайдером и в моем примере клиент получил его 2001:828:105::/48. Последние 64 бита называются идентификатором интерфейса, и это эквивалентно части хоста в IPv4. Это оставляет нас с 16 битами в середине, которые я могу использовать для создания подсетей. Если я хочу, я могу взять еще несколько битов из идентификатора интерфейса, чтобы создать еще больше подсетей, но в этом нет необходимости. Используя 16 бит, мы можем создать 65.536 подсетей ...более чем достаточно для большинства из нас. И с 64 битами для идентификатора интерфейса на подсеть, мы можем иметь восемнадцать квинтиллионов, четыреста сорок шесть квадриллионов, семьсот сорок четыре триллиона, семьдесят четыре миллиарда, семьсот девять миллионов, пятьсот пятьдесят одну тысячу, шестьсот с чем-то хостов на подсеть. Этого должно быть более чем достаточно! Использование 64-битного идентификатора интерфейса также очень удобно, потому что он сокращает ваш IPv6-адрес ровно наполовину! Допустим, наш клиент с префиксом 2001: 828: 105:: / 48 хочет создать несколько подсетей для своей внутренней сети. Какие адреса мы можем использовать? 16 бит дает нам 4 шестнадцатеричных символа. Таким образом, все возможные комбинации, которые мы можем сделать с этими 4 символами, являются нашими возможными подсетями. Все, что находится между 0000 и FFFF, является допустимыми подсетями: 2001:828:105:0000::/64; 2001:828:105:0001::/64; 2001:828:105:0002::/64; 2001:828:105:0003::/64; 2001:828:105:0004::/64; 2001:828:105:0005::/64; 2001:828:105:0006::/64; 2001:828:105:0007::/64; 2001:828:105:0008::/64; 2001:828:105:0009::/64; 2001:828:105:000A::/64; 2001:828:105:000B::/64; 2001:828:105:000C::/64; 2001:828:105:000D::/64; 2001:828:105:000E::/64; 2001:828:105:000F::/64; 2001:828:105:0010::/64; 2001:828:105:0011::/64; 2001:828:105:0012::/64; 2001:828:105:0013::/64; 2001:828:105:0014::/64; И так далее. Всего существует 65 535 возможных подсетей, поэтому, к сожалению, я не могу добавить их все в статью...теперь мы можем назначить эти префиксы различным соединениям типа point-to-point, VLAN и т. д.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59