По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжаем рассказывать про протокол DHCP (Dynamic Host Configuration Protocol) . Мы уже знаем про принципы работы протокола и про его настройку на оборудовании Cisco, и сегодня речь пойдет о том, как находить и исправлять проблемы (заниматься траблшутингом) при работе с DHCP. Проблемы с DHCP могут возникать по множеству причин, таких как проблемы программного обеспечения, в операционных системах, драйверов сетевых карт или агентах ретрансляции, но наиболее распространенными являются проблемы с конфигурацией DHCP. Из-за большого числа потенциально проблемных областей требуется систематический подход к устранению неполадок. Задача 1. Устранение конфликтов IP адресов Срок действия адреса IPv4 может истекать у клиента, все еще подключенного к сети. Если клиент не возобновляет аренду, то сервер может переназначить этот IP-адрес другому клиенту. Когда клиент перезагружается, то он запрашивает адрес и если DHCP сервер не отвечает быстро, то клиент использует последний IP-адрес. Тогда возникает ситуация, когда два клиента используют один и тот же адрес, создавая конфликт. Команда show ip dhcp conflict отображает все конфликты адресов, записанные сервером DHCP. Сервер использует команду ping для обнаружения клиентов. Для обнаружения конфликтов клиент использует протокол ARP. Если обнаружен конфликт адресов, адрес удаляется из пула и не назначается, пока администратор не разрешит конфликт. Выгладит это так: Router# show ip dhcp conflict IP address Detection Method Detection time 192.168.1.33 Ping Feb 19 2018 10:33 AM 192.168.1.48 Gratuitous ARP Feb 19 2018 11:29 AM В столбце IP address указывается конфликтный адрес, в строке Detection Method указывается метод обнаружения (Ping – адрес был обнаружен когда при назначении нового адреса получил положительный ответ на пинг, Gratuitous ARP – конфликт обнаружен в ARP таблице) и Detection time показывает время обнаружения. Чтобы посмотреть список всех выданных адресов сервером используется команда show ip dhcp binding. Задача 2. Проверка физического подключения Сначала нужно проверить, что интерфейс маршрутизатора, действующий как шлюз по умолчанию для клиента, является работоспособным. Для этого используется команда show interface [интерфейс] , и если интерфейс находится в каком либо состоянии кроме как UP, то это означает что порт не передает трафик, включая запросы клиентов DHCP. Задача 3. Проверка связности, используя статический IP адрес При поиске проблем DHCP проверить общую работоспособность сети можно задав статический IP адрес у клиента. Если он может достичь сетевых ресурсов со статически настроенным адресом, то основной причиной проблемы является не DHCP. Задача 4: Проверить конфигурацию порта коммутатора Если DHCP клиент не может получить IP адрес с сервера, то можно попробовать получить адрес вручную, заставляя клиента отправить DHCP запрос. Если между клиентом и сервером DHCP есть маршрутизатор и клиент не может получить адрес, то причиной могут быть настройки портов. Эти причины могут включать в себя проблемы, связанные с транками и каналами, STP и RSTP. Конфигурация PortFast и настройка пограничных портов разрешают наиболее распространенные проблемы клиента DHCP, возникающие при первоначальной установке коммутатора. Задача 5: Проверка работы DHCP в одной и той же подсети или VLAN Важно различать, правильно ли работает DHCP, когда клиент находится в одной подсети или VLAN, что и DHCP-сервер. Если DHCP работает правильно, когда клиент находится в одной подсети, то проблема может быть ретранслятором DHCP (relay agent). Если проблема сохраняется даже при тестировании в одной подсети, то проблема может быть с сервером DHCP. Проверка конфигурации DHCP роутера Когда сервер DHCP находится в отдельной локальной сети от клиента, интерфейс маршрутизатора, обращенный к клиенту, должен быть настроен для ретрансляции запросов DHCP путем настройки helper адреса. Чтобы проверить конфигурацию маршрутизатора для начала нужно убедиться, что команда ip helper-address настроена на правильном интерфейсе. Она должна присутствовать на входящем интерфейсе локальной сети, содержащей DHCP клиентов, и должна быть направлена на правильный сервер DHCP. Для проверки используется команда show ip interface [интерфейс] . Далее нужно убедиться, что в глобальном режиме не была введена команда no service dhcp . Эта команда отключает все функции сервера DHCP и ретрансляции на маршрутизаторе. Для проверки используется команда show running-config | include no service dhcp. Если команда была введена, то она отобразится в выводе. Дебаг DHCP На маршрутизаторах, настроенных как DHCP-сервер, процесс DHCP не выполняется если маршрутизатор не получает запросы от клиента. В качестве задачи по траблшутингу нужно убедиться, что маршрутизатор получает запрос от клиента. Для этого дебага понадобится конфигурация ACL (Access Control List). Нужно создать расширенный Access List, разрешающий только пакеты с UDP портами назначения 67 или 68. Это типичные порты, используемые клиентами и серверами при отправке сообщений DHCP. Расширенный ACL используется с командой debug ip packet для того чтобы отображать только сообщения DHCP. Router(config)# access-list 100 permit udp any any eq 67 Router(config)# access-list 100 permit udp any any eq 68 Router(config)# end Router# debug ip packet 100 IP packet debugging is on for access list 100 *IP: s-0.0.0.0 (GigabitEthernet1/1), d-255.255.255.255, len 333, rcvd 2 *IP: s-0.0.0.0 (GigabitEthernet1/1), d-255.255.255.255, len 333, stop process pak for forus packet *IP: s-192.168.1.1(local), d-255.255.255.255 (GigabitEthernet1/1), len 328, sending broad/multicast Результат в примере показывает, что маршрутизатор получает запросы DHCP от клиента. IP-адрес источника равен 0.0.0.0, поскольку клиент еще не имеет адреса, адрес назначения - 255.255.255.255, потому что сообщение об обнаружении DHCP от клиента отправляется в виде широковещательной передачи. Этот вывод показывает только сводку пакета, а не сообщение DHCP. Тем не менее, здесь видно, что маршрутизатор получил широковещательный пакет с исходными и целевыми IP-адресами и портами UDP, которые являются правильными для DHCP. Другой полезной командой для поиска неполадок DHCP является команда событий debug ip dhcp server. Эта команда сообщает о событиях сервера, таких как назначения адресов и обновления баз. Router(config)#debug ip dhcp server events DHCPD: returned 192.168.1.11 to address pool POOL-1 DHCPD: assigned IP address 192.168.1.12 to client 0011:ab12:cd34 DHCPD: checking for expired leases DHCPD: the lease for address 192.168.1.9 has expired DHCPD: returned 192.168.1.9 to address pool POOL-1
img
Виртуальный телефонный номер - один из ключевых сервисов современной IP-телефонии. Если говорить простым языком, это обычный телефонный номер с большим числом дополнительных преимуществ. Об особенностях виртуального номера и сферах его применения сегодня и пойдет разговор в нашей статье. Виртуальный номер подключается как отдельный сервис или вместе с виртуальной АТС. Сразу хотим отметить, что во втором случае число возможностей виртуального номера в разы увеличивается. Теперь об этих особенностях - более подробно. Особенности виртуальных номеров У номера много линий. Если у компании подключен обычный телефонный номер, то одновременно он может принять только один вызов. В случае с виртуальным номером число входящих звонков не ограничено. Как результат, в компанию легко дозвониться с первого раза, никто из клиентов не слышит сигнал "занято". Номер не привязан к адресу компании. Виртуальный номер никак не связан с адресом компании и местоположением абонента. Даже если фирма работает в Москве или Санкт-Петербурге, можно подключить виртуальный номер любого региона России. Клиент, который звонит на региональный номер никогда не узнает, что позвонил в столицу. Подключение номера за 15 минут. Чтобы подключить корпоративный номер, не надо прокладывать телефонные провода, покупать специальное оборудование и вызывать мастера. Для связи с помощью виртуальных номеров необходимы интернет и устройство для звонков (аналоговый, мобильный или специальный IP-телефон, ПК или ноутбук). Это 3 ключевых особенности виртуального номера. На самом деле, у виртуального номера еще больше преимуществ. Предлагаем их рассмотреть уже на реальных примерах из жизни российских компаний. Примеры использования виртуальных номеров Виртуальные номера решают большое число бизнес-задач, начиная от быстрой телефонизации бизнеса, заканчивая анализом рынка и эффективности рекламных кампаний. Сокращение расходов на связь "Компании используют виртуальные номера, чтобы оптимизировать бюджет на связь. Телефонные номера всех офисов подключаются к одной виртуальной АТС и, таким образом, создается единая корпоративная сеть. Звонить внутри компании можно абсолютно бесплатно. Чтобы связаться с коллегой из другого города и даже страны, достаточно набрать добавочный номер", - комментирует Иван Павлов, руководитель проектов Телфин, российского провайдера IP-телефонии. Выход на новые рынки сбыта Если компания планирует выйти на новый рынок, например, открыть представительство в Москве, можно подключить телефонный номер в коде 495 или 499, создать виртуальный офис и заранее оценить спрос на предоставляемые товары или услуги в столице. Таким образом, телефон не только помогает проанализировать возможность и целесообразность выхода на новый рынок, но и удаленно найти клиентов, сформировать базу постоянных лояльных покупателей. Организация удаленных рабочих мест "Корпоративный виртуальный номер может быть единым номером для всех сотрудников компании, даже если они работают вне офиса. Как пример, менеджер из Новосибирска может принять звонок клиента из Москвы или Екатеринбурга. В данном случае, вызов может прийти как на мобильный, так и домашний номер сотрудника. Сценарий переадресации и умная маршрутизация настраивается индивидуально в каждом конкретном случае", - добавил Иван Павлов. Компании выбирают виртуальные номера в зависимости от целей. Благо, что сегодня на рынке представлен большой выбор виртуальных номеров: российские, иностранные, мобильные, федеральные. Отличаются они по стоимости подключения и ежемесячной абонентской плате. Функциональные возможности виртуального номера меняются в зависимости от АТС, в паре с которой они работают.
img
В предыдущих статьях были рассмотрены три обширные задачи, которые должна решать каждая плоскость управления для сети с коммутацией пакетов, и рассмотрен ряд решений для каждой из этих задач. Первой рассматриваемой задачей было определение топологии сети и ее доступности. Во-вторых, вычисление свободных от петель (и, в некоторых случаях, непересекающихся) путей через сеть. Последняя задача- это реакция на изменения топологии, на самом деле представляет собой набор задач, включая обнаружение и сообщение об изменениях в сети через плоскость управления. В этой серии лекций мы объединим эти заждачи и решения путем изучения нескольких реализаций распределенных плоскостей управления, используемых для одноадресной пересылки в сетях с коммутацией пакетов. Реализации здесь выбраны не потому, что они широко используются, а потому, что они представляют собой ряд вариантов реализации среди решений, описанных в предыдущих лекциях. В каждом конкретном случае рассматривается базовая работа каждого протокола; в последующих статьях мы будем углубляться в вопросы сокрытия информации и другие более сложные темы в плоскостях управления, поэтому здесь они не рассматриваются. Классификация плоскости управления Плоскости управления обычно классифицируются по двум характеристикам. Во-первых, они разделяются в зависимости от того, где вычисляются loop-free пути, будь то на передающем устройстве или выключенном. Плоскости управления, в которых фактические коммутационные устройства непосредственно участвуют в расчете loop-free путей, затем разделяются на основе вида информации, которую они несут о сети. Классификация, основанная на алгоритме, используемом для вычисления loop-free путей, отсутствует, хотя это часто тесно связано с типом информации, передаваемой плоскостью управления. В то время как централизованные плоскости управления часто связаны с несколькими (или одним, концептуально) контроллерами, собирающими информацию о достижимости и топологии от каждого коммутационного устройства, вычисляющими набор loop-free путей и загружающими полученную таблицу пересылки на коммутационные устройства, концепция гораздо менее строгая. Ц В более общем смысле централизованная плоскость управления означает просто вычисление некоторой части информации о пересылке где-нибудь, кроме фактического устройства пересылки. Это может означать отдельное устройство или набор устройств; это может означать набор процессов, запущенных на виртуальной машине; это может означать вычисление всей необходимой информации о пересылке или (возможно) большей ее части. Плоскости распределенного управления обычно различаются тремя общими характеристиками: Протокол, работающий на каждом устройстве и реализующий различные механизмы, необходимые для передачи информации о доступности и топологии между устройствами. Набор алгоритмов, реализованных на каждом устройстве, используемый для вычисления набора loop-free путей к известным пунктам назначения. Способность обнаруживать и реагировать на изменения доступности и топологии локально на каждом устройстве. В распределенных плоскостях управления не только каждый прыжок (hop by hop) с коммутацией пакетов, но и каждый прыжок определяет набор loop-free путей для достижения любого конкретного пункта назначения локально. Плоскости распределенного управления обычно делятся на три широких класса протоколов: состояние канала, вектор расстояния и вектор пути. В протоколах состояния канала каждое устройство объявляет состояние каждого подключенного канала, включая доступные пункты назначения и соседей, подключенных к каналу. Эта информация формирует базу данных топологии, содержащую каждое звено, каждый узел и каждый достижимый пункт назначения в сети, через который алгоритм, такой как Dijkstra или Suurballe, может быть использован для вычисления набора loop-free или непересекающихся путей. Протоколы состояния канала обычно заполняют свои базы данных, поэтому каждое устройство пересылки имеет копию, которая синхронизируется с каждым другим устройством пересылки. В протоколах вектора расстояния каждое устройство объявляет набор расстояний до известных достижимых пунктов назначения. Эта информация о достижимости объявляется конкретным соседом, который предоставляет векторную информацию или, скорее, направление, через которое может быть достигнут пункт назначения. Протоколы вектора расстояния обычно реализуют либо алгоритм Bellman-Ford, либо алгоритм Garcia-Luna’s DUAL, либо аналогичный алгоритм для расчета маршрутов без петель в сети. В протоколах вектора пути, путь к пункту назначения, записывается по мере того, как объявление о маршрутизации проходит через сеть, от узла к узлу. Другая информация, такая как показатели, может быть добавлена для выражения некоторой формы политики, но первичный, свободный от петель, характер каждого пути вычисляется на основе фактических путей, по которым объявления проходят через сеть. На рисунке 1 показаны эти три типа распределенных плоскостей управления. На рисунке 1: В примере состояния связи- вверху каждое устройство объявляет, что оно может достичь любе друге устройство в сети. Следовательно, A объявляет достижимость B, C и D; в то же время D объявляет достижимость 2001:db8:3e8:100::/64 и C, B и A. В примере вектора расстояния - в середине D объявляет достижимость до 2001:db8:3e8:100:: 24 до C с его локальной стоимостью, которая равна 1. C добавляет стоимость [D,C] и объявляет достижимость до 2001:db8:3e8:100::64 со стоимостью 2 до B. В примере вектора пути - внизу D объявляет о достижимости до 2001:db8:3e8:100::/24 через себя. C получает это объявление и добавляет себя к [D,C]. Плоскости управления не всегда аккуратно вписываются в ту или иную категорию, особенно когда вы переходите к различным формам сокрытия информации. Некоторые протоколы состояния канала, например, используют принципы вектора расстояния с агрегированной информацией, а протоколы вектора пути часто используют некоторую форму расположения метрик вектора расстояния для увеличения пути при вычислении loop-free путей. Эти классификации - централизованный, вектор расстояния, состояние канала и вектор пути - важны для понимания и знакомства с миром сетевой инженерии.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59