По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Теперь мы можем продолжить поиск и устранение неисправностей. В большинстве случаев вы ожидаете увидеть определенную сеть в таблице маршрутизации, но ее там нет. Далее рассмотрим несколько сценариев неправильной (или полностью не рабочей) работы EIGRP и как исправить наиболее распространенные ошибки. Ниже перечислены часто встречающиеся ошибки: Первую часть статьи про траблшутинг EIGRP можно почитать здесь. Кто-то настроил distribute-list, чтобы информация о маршрутах фильтровалась. Было настроено автосуммирование или кто-то настроил суммирование вручную Split-horizon блокирует объявление маршрутной информации. Перераспределение было настроено, но информация из EIGRP не используется. Перераспределение было настроено, но никакие внешние маршруты EIGRP не отображаются. Case #1 Давайте начнем с простой топологии. OFF1 и OFF2 работают под управлением EIGRP, и каждый маршрутизатор имеет интерфейс обратной связи. Вот конфигурация обоих маршрутизаторов: OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF1(config-router)#network 1.1.1.0 0.0.0.255 OFF1(config-router)#network 192.168.12.0 0.0.0.255 OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary OFF2(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config-router)#network 192.168.12.0 0.0.0.255 Все работает нормально, пока через пару недель один из пользователей не пожаловался на то, что ему не удалось подключиться к сети 2.2.2.0 / 24 из-за OFF1. Посмотрите на таблицу маршрутизации на OFF1, и вот что вы видите: По какой-то причине нет сети 2.2.2.0 / 24 в таблице маршрутизации. Видно, что на OFF1 не настроен distribute lists. OFF2 содержит сеть 1.1.1.0 / 24 в своей таблице маршрутизации. Давайте выполним быструю отладку, чтобы увидеть, что происходит. Отладка показывает нам, что происходит. Прежде чем вы увидите это сообщение, придется немного подождать, или вы можете сбросить соседство EIGRP, чтобы ускорить процесс. Как видите, в сети 2.2.2.0 / 24 отказано из-за distribute list. Другой быстрый способ проверить это - использовать команду show ip protocol. В этом случае использование show run могло бы быстрее обнаружить distribute-list. Вот список доступа, доставляющий нам неприятности. OFF2(config)#router eigrp 12 OFF2(config-router)#no distribute-list 1 out Удалим distribute-list. Задача решена! Извлеченный урок: если команды network верны, проверьте, есть ли у вас distribute-list, который запрещает объявлять префиксы или устанавливать их в таблицу маршрутизации. Имейте в виду, distribute-list могут быть настроены как входящие или исходящие, как список доступа. Case #2 В следующем сценарии те же 2 маршрутизатора, но разные сети в loopback. Вот конфигурация: OFF1(config)#router eigrp 12 OFF1(config-router)#network 192.168.12.0 OFF1(config-router)#network 10.0.0.0 OFF2(config)#router eigrp 12 OFF2(config-router)#network 192.168.12.0 OFF2(config-router)#network 10.0.0.0 Как вы видите - это довольно базовая конфигурация. Глядя на таблицы маршрутизации, не видно сети 10.1.1.0 / 24 или 10.2.2.0 / 24. Видна запись для сети 10.0.0.0/8, указывающую на интерфейс null0. Эта запись отображается только при настройке суммирования и используется для предотвращения циклов маршрутизации. Давайте включим отладку и посмотрим, что мы можем найти. OFF2#clear ip eigrp 12 neighbors Этой командой мы сделаем сброс соседства EIGRP, чтобы ускорить процесс. Имейте в виду, что это, вероятно, не самое лучшее, что можно сделать в производственной сети, пока вы не узнаете, что не так, но это действительно помогает ускорить процесс. Вот наш ответ. Отладка говорит нам, что сеть 10.2.2.0 / 24 не следует объявлять, а сеть 10.0.0.0 / 8 нужно объявлять (это вкратце). Это может произойти по двум причинам: Суммирование было кем-то настроено Авто-суммирование включено для EIGRP. Как вы видите, авто-суммирование включено для EIGRP. В зависимости от версии IOS авто-суммирование включено или отключено по умолчанию. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary Отключение автоматического суммирования должно помочь. Ну что, наши сети появились в таблице маршрутизации. Извлеченный урок: если включена автоматическое суммирование EIGRP, вы можете столкнуться с нестабильными сетями. Case #3 Очередная проблема. В приведенном выше примере у нас есть 2 маршрутизатора, но разные сети. OFF1 содержит сеть 172.16.1.0 / 24 на интерфейсе обратной связи, а OFF2 содержит сеть 172.16.2.0 / 24 и 172.16.22.0 / 24 на своих интерфейсах обратной связи. Посмотрим конфигурацию EIGRP обоих маршрутизаторов: Как вы видите, что все сети объявляются. Обратите внимание, что в OFF1 включено автоматическое суммирование, а в OFF2 отключено автоматическое суммирование. Кто-то настроил суммирование на OFF2 и отправляет ее на OFF1. Суммирование создана для сети 172.16.0.0 / 16. Однако, если посмотреть на таблицу маршрутизации OFF1, она не появится. Мы видим запись для сети 172.16.0.0 / 16, но она указывает на интерфейс null0, а не на OFF2. Что здесь происходит? OFF2#clear ip eigrp 12 neighbors Давайте сделаем отладку на OFF2, чтобы увидеть, объявляется ли суммирование. Выполним команду clear ip eigrp neighbors, просто чтобы ускорить процесс. Глядя на отладку, видно, что OFF2 работает правильно. Он объявляет сводный маршрут 172.16.0.0 / 16 так, как должен. Это означает, что проблема должна быть в OFF1. Давайте проведем отладку OFF1. Мы можем видеть, что OFF1 получает сводный маршрут от OFF2, но решает не использовать его. Это хороший момент для проверки таблицы топологии EIGRP. Вы видите, что он имеет суммирование сети 172.16.0.0 / 16 от OFF2 в своей таблице топологии EIGRP, но OFF1 решает не использовать ее, потому что вход через интерфейс null0 является лучшим путем. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary Решение состоит в том, что нам нужно избавиться от записи null0 в таблице маршрутизации. Единственный способ сделать это - отключить автоматическое суммирование. Отключение автоматического суммирования удаляет запись null0, и теперь суммирование OFF2 установлено проблема решена! Извлеченный урок: автоматическое суммирование EIGRP создает запись через интерфейс null0, которая может помешать установке суммирования, которые вы получаете от соседних маршрутизаторов. Case #4 Есть еще одна проблема с суммированием, которую сейчас и разберем. Мы используем топологию, которую вы видите выше, и ниже конфигурация EIGRP обоих маршрутизаторов. Все сети объявлены, и автоматическое суммирование отключено на обоих маршрутизаторах. Суммирование было настроено на OFF2 и должно быть объявлено к OFF1. К сожалению, ничего не видно на OFF1. Давайте проверим OFF2, чтобы посмотреть, что не так. Когда дело доходит до устранения неполадок с сетью, вашими друзьями являются не Google или Яндекс, а команды Debug и show. Странно, это единственная сеть, которую OFF2 объявляет. Одно из золотых правил маршрутизации: вы не можете объявлять то, чего у вас нет. Очевидно, OFF2 знает только о сети 192.168.12.0 / 24. Вот это ошибка! Кто-то выполнил команду отключения на интерфейсах обратной связи. OFF2(config)#interface loopback 0 OFF2(config-if)#no shutdown OFF2(config)#interface loopback 1 OFF2(config-if)#no shutdown Включим интерфейсы. Теперь мы видим, что суммирование объявляется. Теперь мы видим суммирование в таблице маршрутизации OFF1- проблема решена! Извлеченный урок: вы не можете объявлять то, чего у вас нет в таблице маршрутизации. ВАЖНО. Последняя проблема может быть показаться простой, но есть важный момент, который вы не должны забывать: для объявления итогового маршрута в таблице маршрутизации объявляемого маршрутизатора должен быть указан хотя бы один префикс, попадающий в итоговый диапазон! Case #5 Давайте посмотрим на другую топологию. На рисунке выше у нас есть концентратор Frame Relay и соответствующая топология. Каждый из OFF1 и OFF2 имеет интерфейс обратной связи, который мы будем объявлять в EIGRP. Вот соответствующая конфигурация всех маршрутизаторов: CONC(config)#router eigrp 123 CONC(config-router)#no auto-summary CONC(config-router)#network 192.168.123.0 OFF1(config-if)#router eigrp 123 OFF1(config-router)#no auto-summary OFF1(config-router)#network 192.168.123.0 OFF1(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config)#router eigrp 123 OFF2(config-router)#no auto-summary OFF2(config-router)#network 192.168.123.0 OFF2(config-router)#network 3.3.3.0 0.0.0.255 Видно, что все сети объявлены. Наш концентратор-маршрутизатор видит сети из двух OFF-маршрутизаторов. К сожалению, наши маршрутизаторы не видят ничего ... Похоже, что маршрутизатор-концентратор не объявляет сети, которые он изучает с помощью OFF-маршрутизаторов. Давайте включим отладку, чтобы увидеть, что происходит. CONC#clear ip eigrp 123 neighbors Сбросим соседство EIGRP, чтобы ускорить процесс. В отладке мы видим, что наш маршрутизатор-концентратор узнает о сети 2.2.2.0 / 24 и 3.3.3.0 / 24, но объявляет только сеть 192.168.123.0 / 24 для OFF-маршрутизаторов. Разделение горизонта не позволяет размещать объявление от одного маршрутизатора на другой. CONC(config)#interface serial 0/0 CONC(config-if)#no ip split-horizon eigrp 123 Давайте отключим разделение горизонта на последовательном интерфейсе маршрутизатора-концентратора. Теперь мы видим, что маршрутизатор-концентратор объявляет все сети. OFF-маршрутизаторы теперь могут узнавать о сетях друг друга, поскольку split horizon отключено. Это хорошо, но это еще не все. Извлеченный урок: RIP и EIGRP являются протоколами маршрутизации на расстоянии и используют split horizon. Split horizon предотвращает объявление префикса вне интерфейса, на котором мы его узнали. Хотя сети отображаются в таблицах маршрутизации мы не можем пропинговать от одного OFF-маршрутизатора к другому. Это не проблема EIGRP, но она связана с Frame Relay. Мы должны это исправить. Когда OFF1 отправляет IP-пакет на OFF2, IP-пакет выглядит следующим образом: Давайте пока подумаем, как роутер, и посмотрим, что здесь происходит. Сначала нам нужно проверить, знает ли OFF1, куда отправить 3.3.3.3: Существует запись для 3.3.3.3, а IP-адрес следующего перехода - 192.168.123.1 (маршрутизатор-концентратор). Можем ли мы достичь 192.168.123.1? Нет проблем, кажется, OFF1 может пересылать пакеты, предназначенные для сети 3.3.3.0/24. Давайте перейдем к маршрутизатору CONC. У маршрутизатора-концентратора нет проблем с отправкой трафика в сеть 3.3.3.0 / 24, поэтому на данный момент мы можем сделать вывод, что проблема должна быть в маршрутизаторе OFF2. Это IP-пакет, который получает маршрутизатор OFF2, и когда он отвечает, он создает новый IP-пакет, который выглядит следующим образом: Способен ли OFF2 достигать IP-адрес 192.168.123.2 Давайте узнаем! Теперь мы знаем проблему ... OFF2 не может достичь IP-адреса 192.168.123.2 Если мы посмотрим на таблицу маршрутизации OFF2, то увидим, что сеть 192.168.123.0 / 24 подключена напрямую. С точки зрения третьего уровня у нас нет никаких проблем. Пришло время перейти вниз по модели OSI и проверить уровень 2 ... или, может быть, между уровнем 2 и 3. Frame Relay использует Inverse ARP для привязки уровня 2 (DLCI) к уровню 3 (IP-адрес). Вы можете видеть, что нет сопоставления для IP-адреса 192.168.123.2. OFF2(config)#int s0/0 OFF2(config-if)#frame-relay map ip 192.168.123.2 301 Давайте frame-relay map сами. Теперь роутер OFF2 знает, как связаться с роутером OFF1 Наконец, маршрутизатор OFF1 может пропинговать интерфейс обратной связи маршрутизатора OFF2. Когда мы пытаемся пропинговать от маршрутизатора OFF2 к интерфейсу обратной связи маршрутизатора OFF1, у нас возникает та же проблема, поэтому мы также добавим туда оператор frame-relay map: OFF1(config)#int s0/0 OFF1(config-if)#frame-relay map ip 192.168.123.3 201 Теперь у нас есть extra frame-relay map на маршрутизаторе OFF1. И наш пинг проходит!
img
Что такое антивирусная защита? Примеры решений Антивирусная защита (AV-защита) компаний призвана обеспечить безопасность данных, составляющих коммерческую тайну, а также всех остальных, хранящихся и используемых в корпоративной компьютерной сети и извне нее, но имеющих отношение к организации. Важно учитывать, что если пользовательские антивирусы в основном отражают атаки вирусов, распространяющихся автоматически сразу на всех, то коммерческий AV-продукт уже должен "уметь" отражать индивидуальные несанкционированные попытки завладения информацией. Если злоумышленникам нет особого смысла стараться проникнуть на частный компьютер, то на компьютерную сеть организации уже вполне может быть предпринято серьезное вторжение по чисто коммерческим соображениям. И, чем выше капитализация компании, тем лучше должна быть AV-защита. Если частное лицо задается вопросом "платить за антивирус, или не платить", то даже для малого бизнеса такой вариант неприемлем, так как компьютеры там работают не только с информацией, но и с электронными деньгами. В случае вирусной атаки убытки будут слишком значительными. От корпоративного и "гражданского" антивируса требуются различные задачи. Например, продукт для простого пользователя должен "уметь" инсталлироваться на зараженный компьютер. То есть, когда вирус уже сработал, и пользователь "спохватился" об установке антивируса. Такая типичная для простого человека ситуация не должна происходить в организации. Там всегда установлен тот или иной антивирусный софт, который обязан постоянно обновляться. При этом от корпоративного антивируса сохраняется требование сложной задачи - "лечение" зараженной системы с восстановлением большого количества файлов. Корпоративный продукт отличается, он гораздо сложнее и стоит дороже пользовательского. Виды угроз Компьютерный вирус - вредоносная программа, обладающая свойствами распространения, (аналогия с распространяющимися биологическими вирусами). Термин "вирус" применяют и к другим рукотворным объектам информационной среды, например "вирусные" рекламные ролики, информационные вбросы, фейки. Цели разработки компьютерных вирусов различные. Первоначально они возникли как любительские изыскания, затем перешли на серьезную коммерческую основу с появлением электронных денег, так как появилась прямая возможность их (деньги) похитить. Сейчас индустрия антивирусных программ защищает не только личные, коммерческие, но и корпоративные и государственные интересы. Но "вирус" - это несколько устаревшее название, которое, тем не менее, до сих пор крайне популярно в непрофессиональных кругах. Подробнее почитать про другие типы вредоносов можно почитать в другой нашей статье: https://wiki.merionet.ru/seti/19/tipy-vredonosnogo-po/ Антивирусные базы - основы антивирусов Сигнатурный анализ невозможен без базы вирусов, которая содержит все опасные образцы кода. При этом нет никакой необходимости включать в базу буквально все, иначе она будет иметь слишком большой объем, и сравнение с ней затребует значительной вычислительной мощности. Достаточно добавить лишь те фрагменты кода, без которых создание программы, имеющей свойство самостоятельно распространяться (вируса), невозможно. Сигнатурный анализ повсеместно используется в антивирусном ПО, и сейчас переходит в интернет среду для анализа трафика на провайдерах. База антивируса содержит не образцы вирусов, а сигнатуры - фрагменты кода, общие для многих вредоносных программ. Чем больше сигнатур содержит база - тем лучше защита, а чем меньше ее объем в байтах - тем меньше системных ресурсов потребляет антивирус. Рейтинг AV-защиты от различных разработчиков Идеальный антивирус обеспечивает 100% защиту, потребляет ноль ресурсов и имеет ноль ложных срабатываний. Такого программного продукта не существует ни у одной компании в мире. К нему приближаются отдельные разработки, в различной степени и на основе чего составляются рейтинги. Но помните: кто обещает вам 100% гарантию защиты - эти люди просто напросто лукавят. Для антивирусов важны объективные и независимые тесты надежности. Показатель защиты должен сопоставляться с потребляемой вычислительной мощностью, которая хотя и становится все более значительной, но не бесконечна. Вряд ли кому будут нужны антивирусы, сильно замедляющие работу компьютеров. Антивирусное ПО разрабатывается для различного железа: офисные компьютеры, мобильные устройства, специальное оборудование, например, медицинская техника, терминалы POS, промышленные компьютеры. В защите нуждается абсолютно все. Основные организации, тестирующие софт для AV-защиты и составляющие рейтинги и рекомендации: AV-Test. ICRT (Международная Ассамблея Потребительских Испытаний). Лаборатория Касперского. Роскачество. AV-тест критически оценен лабораторией Касперского, которая официально призывает не доверять его сертификатам. Другие организации из этого списка отрицательных оценок в публичном поле не получали. Эволюция антивирусов, что изменилось с начала 21 века? Самые первые антивирусы, появившиеся еще в 90-х годах, использовали только сигнатурный анализ. Количество всех известных вредоносных программ на то время было невелико, и их всех можно было занести в базу. Критерий защиты был простой - кто больше вирусов "знает", тот и лучше. Операционные системы того времени (на начало 2000-х годов) не обновлялись так часто, как сейчас, и поэтому имеющиеся уязвимости держались долго, что и использовалось многочисленными хакерскими группировками. Незначительное распространение вирусов при весьма слабых антивирусах связывалось с отсутствием прямой коммерческой заинтересованности. То есть автор вируса не получал денег напрямую от проводимых атак с помощью своего детища. С распространением электронных денег (и криптовалют в особенности), ситуация в корне поменялась. После 2010 года антивирусы дополнились облачными технологиями, причем облако может быть не только файловым хранилищем, но еще и аналитическим центром по отслеживанию всех кибератак в мире, что чрезвычайно важно для их пресечения. Чисто сигнатурный подход уже не актуален, так как производство компьютерных вирусов поставлено хакерскими группировками на поток. Их появляются тысячи в день. Последней новинкой в антивирусной индустрии являются алгоритмы машинного обучения вкупе с облачными технологиями big-data. Именно такое решение предлагается в сегменте корпоративной AV-защиты. Защита от кибератак переходит на надгосударственный уровень. Появляются ассоциации кибербезопасности. Особенность современных антивирусов - кроссплатформенность и наличие версий для защиты специализированного оборудования, например терминалов POS, банкоматов, критических объектов "интернета вещей". Железо в этих устройствах имеет очень небольшую вычислительную мощность, что учитывается при разработке защитного ПО для них. Пример решения: Microsoft Defender Antivirus Программное обеспечение от Microsoft лицензировано для применения во многих организациях, в том числе и в ряде компаний государственного сектора. Факт почти повсеместного доверия к ПО этого гиганта IT-индустрии упрощает регистрацию антивирусов в организации. Microsoft Defender Antivirus при тестировании в лаборатории AV-Comparatives (коммерческие версии) уверенно справляется с банковскими троянами MRG-Effitas. Встроенный "защитник Windows 10" (пользовательское название Microsoft Defender Antivirus) стал корпоративным антивирусом лишь недавно. Ранее в его лицензионном соглашении стояла рекомендация "только для частного применения" и лицензия не позволяла его применять не по назначению. С изменением правил он стал чуть ли не единственным бесплатным коммерческим антивирусом. Правда, пока что только для мелкого бизнеса с числом рабочих станций не более 10. Решения Лаборатории Касперского для крупного бизнеса Крупному бизнесу приходится сталкиваться с угрозами иного уровня, чем частым лицам и мелким компаниям. В профессиональной среде это отмечается термином "целевые атаки", которые проводятся именно на крупный бизнес во всех странах мира. С целью защиты от них задействуются технологии машинного обучения, облачные данные и весь предыдущий опыт, в который входят десятки тысяч отраженных угроз, постоянный учет и коррекция ошибок. Корпоративные продукты от Касперского используют более 270000 компаний по всему миру. Примеры решений AV-защиты от всем известной компании: Kaspersky Atni Targeted Attack (Основной антивирусный продукт для крупного бизнеса, помимо стандартных функций безопасности нацелен на выявление ранее неизвестных атак, где не походит сигнатурный метод). Kaspersky Endpoint Detection and Response ("внутренний" антивирус для обнаружения и пресечения инцидентов на местах внутри корпорации, а не интернета извне). Kaspersky Embedded Systems Security (для банкоматов и POS-терминалов с учетом требований их маломощного "железа"). Пример решения: ESET NOD32 Antivirus Business Edition Типовой антивирус для малого бизнеса. Использует технологии облачной защиты - подключение к ESET Live Grid с динамически обновляемыми базами и своевременными оповещениями о киберугрозах со всего мира, что ставит его на один уровень с передовыми продуктами Касперского. ESET NOD32 Antivirus Business Edition не работает на мобильных устройствах, поэтому подходит преимущественно для офисов со стандартными рабочими станциями. Корпорация ESET имеет хорошую репутацию, а тысячи компаний - значительный положительный опыт использования ее продукции. Заключение Антивирусная защита постоянно совершенствуется по мере роста IT-технологий. В нее вкладываются значительные инвестиции, так как любая организация вне зависимости от своего масштаба заинтересована в кибербезопасности. AV-защита проводится в комплексе с другими технологиями и правилами информационной безопасности - то есть используется "эшелонированный" подход - на периметре сети устанавливается межсетевой экран следующего поколения с включенной системой предотвращения угроз, отдельно защищается электронная почта и доступ в интернет, все подозрительные файлы отправляются в песочницу и пр. Таким образом, система защиты становится похожа на луковицу - тем, что у нее также много слоев, и из-за этого преодолеть ее становится сложнее. Кроме того, очень популярна практика установки на предприятиях устанавливается система DLP, отслеживающая попытки несанкционированного доступа и неправильного использования данных. Сотрудники проходят тренинги, обучение "цифровой гигиене", правилам защиты коммерческой тайны. Все используемое программное обеспечение должно быть лицензионным, где разработчики ради сохранения репутации гарантирует сохранность данных. Сервера снабжаются функцией резервного копирования, доступ к информации обеспечивается только для проверенных лиц, что обеспечивается системой СКУД.
img
Сегодня подробно разберёмся в том, как настроить запись телефонных разговоров, проходящих через нашу IP-АТС Asterisk, с помощью графической оболочки FreePBX 13. Данная статья будет так же полезна тем, у кого, по каким то причинам, не записываются телефонные разговоры и они хотят это исправить. Заглянем в FreePBX Множество модулей во FreePBX позволяют включить запись телефонных разговоров напрямую, к таким относятся Extensions, Queues, Ring Groups, Inbound Routes. То есть, например, при создании нового внутреннего номера или ринг группы мы можем определить, записывать ли разговоры проходящие через них. Для этого, в каждом модуле, который позволяет настроить запись, есть раздел Recording Options или Call Recording, в котором доступно 5 режимов записи - Force, Yes, Don't Care, No и Never. Данные режимы, позволяют определить, как именно будет идти запись в течение "жизни вызова" или call flow. Вы можете спросить - "Зачем в модулях предусмотрено целых 5 режимов? Почему бы просто не оставить: Yes - есть запись, No - записи нет?" Все дело в том, что звонок может менять свое назначение, например, он может изначально поступить на телефон секретаря Extension, а потом его переведут, например, на отдел продаж Ring Group (цикл звонка и есть call flow), в одном модуле запись может быть включена, а в другом нет и вот чтобы определить, что будет записано и служат эти 5 режимов. Давайте разберёмся подробнее в их логике: Force и Never заменяют друг друга и имеют высший приоритет чем Yes и No Yes и No имеют одинаковый приоритет Когда один и больше Yes или No встречается в call flow, в приоритете всегда будет первое значение. Последующие опции Yes или No не переопределяют первую. Force и Never будут всегда переопределять опции, которые установлены ранее. Force и Never будут всегда заменять друг друга. Например если сначала был установлен Force, а потом встречается Never, то в приоритете будет Never Force и Never будут всегда заменять предустановленные опции Yes и No Yes и No никогда не заменять Force и Never Don’t Care не будет изменять предыдущую опцию. Чтобы было проще понять логику этих 5 режимов, каждый раз, когда встречается No представляйте себе такую фразу – «Я бы предпочел не записывать эту часть вызова, если раньше мне не говорили записать её», когда Yes, такую фразу – «Я хотел бы записать эту часть вызова, если только ранее я не был предупрежден не делать этого». Если встречаете Force, то представьте такую фразу – «Начать или продолжить запись сейчас же!», а если Never - «Закончить запись сейчас же!». И наконец, если встречаете Don’t Care - «Сейчас ничего менять не нужно» Следует отметить, что некоторые модули, такие как Conference не имеют опций Force, Don’t Care и Never, а имеют только Yes и No, а некоторые, например, Ring Group наоборот, имеют только опции Force, Don’t Care и Never. Ещё одной важной функцией записи телефонных разговоров, является запись по требованию - On Demand Recording. С помощью данной функции, администратор IP-АТС может настроить пользователю определенного внутреннего номера Extension, эксклюзивное право включать и выключать запись прямо во время разговора, используя программируемую кнопку на корпусе его телефона или специальный Feature Code, по умолчанию это *1. Для того, чтобы настроить данный функционал, необходимо открыть Applications → Extensions далее открыть вкладку Advanced, прокрутить меню до опции Recording Option и найти поле On Demand Recording Как видите, On Demand Recording имеет следующие режимы: Disable - Пользователь внутреннего номера не сможет использовать функцию записи по требованию, не зависимо от того, какой режим имеет вызов Force, Yes, Don't Care, No или Never.Если пользователь попробует ввести специальный Feature Code, то он услышит ответ “access denied” – “доступ запрещен” Enable - Функция записи по требованию доступна пользователю, но только если звонок имеет режим Yes,No или Don’t Care. Если звонок в режиме Force, или Never, то он услышит “доступ запрещен” Overrride - Пользователь всегда может включить или выключить запись по требованию, вне зависимости от режима Force, Yes, Don't Care, No или Never. Теперь, чтобы основательно закрепить материал, давайте рассмотрим пример вызова и посмотрим, как будет меняться режим записи в этом call flow: Допустим, мы имеем входящий звонок, в правилах входящего маршрута - Inbound Route которого установлен режим записи Yes. В результате генерируется файл записи и запись разговора начинается. По правилам этого входящего маршрута, вызов переходит в очередь Queue, режим записи которой - Don’t Care - запись продолжается. В очереди, звонок принимает оператор, в правилах внутреннего номера которого, стоит режим записи входящих звонков (Inbound External Calls) - No. Запись продолжается, потому что перед этим, в первом шаге, на входящем маршруте был установлен режим Yes и он имеет приоритет. Оператор нажимает *1, в настройках его внутреннего номера On Demand Recording установлен режим - Enable. Запись останавливается. Оператор переводит звонок на ринг-группу (Ring Group), режим записи которой - Force. Запись продолжается. В ринг группе, звонок принимает менеджер, в правилах внутреннего номера которого, стоит режим записи входящих звонков (Inbound Internal Calls) - Never. Запись снова остановлена. Менеджер хочет начать запись и нажимает *1 и слышит в трубке “доступ запрещен”, потому что функция записи по требованию заблокирована режимом Never Таким образом, если Вы вдруг заметили, что у вас отсутствуют записи каких-либо телефонных разговоров или отдельных их частей, а вы вроде как её включали в настройках, то рекомендуем Вам проследить call flow звонка, в котором нет записи и посмотреть – какой режим включается на каждом из этапов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59