По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В предыдущей статье мы рассмотрели необходимость перераспределения маршрутов, а также рассмотрели некоторые примеры конфигурации. Эта статья основана на предыдущей конфигурации и рассматривает возможность фильтрации маршрутов с помощью карт маршрутов. В частности, в предыдущем примере показано взаимное перераспределение маршрутов между EIGRP и OSPF, где все маршруты были перераспределены между двумя автономными системами. Однако некоторые сценарии проектирования могут потребовать, чтобы мы предотвратили перераспределение каждого отдельного маршрута. Один из способов сделать эту фильтрацию - использовать карту маршрутов. Для справки, вот топология, с которой мы работаем: Кроме того, с нашей текущей конфигурацией перераспределения маршрутов таблица IP-маршрутизации на роутере OFF1 выглядит следующим образом: Скажем, по какой-то причине мы не хотим, чтобы сеть 192.168.2.0 /24 была перераспределена из EIGRP в OSPF. Один из способов сделать эту фильтрацию - использовать карту маршрутов, которая ссылается на список управления доступом (ACL). Во-первых, давайте перейдем к роутеру CENTR и создадим ACL, который соответствует сети, которую мы хотим отфильтровать. CENTR # conf term Enter configuration commands, one per line. End with CNTL/Z. CENTR (config) access-list 1 permit 192.168.2.0 0.0.0.255 Обратите внимание на использование ключевого слова permit в ACL. В этом контексте слово permit одно из ключевых среди match, notallow. Далее мы будем ссылаться на этот ACL в карте маршрутов, и это карта маршрутов, расскажет, что мы хотим запретить этой сети быть перераспределенной. Вот как мы можем создать эту карту маршрута: CENTR (config)# route-map LAB deny 10 CENTR (config-route-map) # match ip address 1 CENTR (config-route-map) #exit CENTR (config)# route-map LAB permit 20 CENTR (config-route-map) exit CENTR (config)# Обратите внимание, что у нас есть два оператора route-map с порядковыми номерами 10 и 20. Как и в ACL, route-map обрабатываются сверху вниз. В этом примере мы хотим запретить сеть 192.168.2.0 / 24 с порядковым номером 10. Затем, чтобы разрешить перераспределение всего остального трафика, мы создаем инструкцию route-map с порядковым номером 20. Обратите внимание, что в отличие от предыдущего оператора route-map (который содержал ключевое слово deny), этот оператор route-map содержит ключевое слово permit. В результате, без необходимости указывать условие соответствия, мы сопоставляем (и разрешаем) все остальные маршруты. Далее, давайте применим нашу карту маршрута к команде redistribute в нашем процессе маршрутизации OSPF на роутере CENTR. В настоящее время команда redistribute для процесса маршрутизации OSPF выглядит следующим образом: edistribute eigrp 1 metric-type 1 subnets То, что мы хотим сделать - это переписать эту команду, добавив ссылку на нашу недавно созданную карту маршрутов. CENTR (config)# router ospf 1 CENTR (config-router)# redistribute eigrp 1 metric-type 1 subnets route-map LAB CENTR (config-router)#end CENTR# Теперь давайте вернемся к роутеру OFF1 и посмотрим, исчезла ли сеть 192.168.2.0/24 из таблицы IP-маршрутизации. Все отлично! Маршрут 192.168.2.0/24 был успешно отфильтрован. В следующей статье мы рассмотрим, как можно устранить неполадки с перераспределением маршрутов.
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
img
В этой статье расскажем о различных концепциях и стратегиях, которые реализуют многие организации для защиты своих активов как от внутренних, так и от внешних киберугроз. Вы узнаете об этих трех основных принципах, и о том, как они используются в различных организациях. Кроме того, вы узнаете о ключевых терминах безопасности и моделях контроля доступа. При подключении устройства к сети и Интернету, организации открывают двери для хакеров, которые могут проникнуть в их сеть и нанести ущерб. Есть много организаций, которые используют только брандмауэр в своей сети и поэтому думают, что и их внутренняя сеть, и пользователи защищены от угроз в Интернете. Брандмауэр, как единственное сетевое устройство, развернутое между внутренней сетью и Интернетом, — это просто первый уровень безопасности для всей организации. Многие люди задаются вопросом: а не достаточно ли брандмауэра для фильтрации вредоносного входящего и исходящего трафика? Много лет назад ответ был бы однозначно «да». Однако, поскольку хакеры всегда ищут новые стратегии для проникновения в сеть, мы не можем полагаться только на один уровень безопасности для защиты наших активов. Ответ на этот вопрос уже не является однозначным «да» просто потому, что существует много типов трафика, которые используют небезопасные сетевые протоколы для обмена сообщениями между источником и получателем. Ниже приведены лишь некоторые из многих вопросов, которые должен задать специалист по кибербезопасности: Осуществляет ли организация активный мониторинг сообщений Domain Name System (DNS) на предмет угроз? Есть ли в организации какие-либо решения для обеспечения безопасности, защищающие входящие и исходящие сообщения электронной почты компании? Если в сети происходит кибератака, существуют ли системы для упреждающего блокирования и оповещения отдела информационных технологий? Есть ли в организации специальная группа или человек по безопасности для управления общей безопасностью всего предприятия? Существуют ли какие-либо политики безопасности и технические средства контроля для защиты внутренней сети? Многие поставщики систем безопасности используют маркетинговые стратегии и используют модные слова (buzzwords), чтобы повлиять на потенциальных клиентов для приобретения их устройств безопасности «все в одном». Ключевой момент, который упускают многие не осведомленные клиенты, — это то, как решение или продукт безопасности будет защищать всех пользователей и все типы трафика, защищать их при использовании небезопасных протоколов и так далее. Примером может служить использование endpoint protection (защиты конечных точек). Вы можете рассматривать это решение как антивирусное программное обеспечение с централизованным управлением для администратора. Хотя многие решения для защиты от вредоносных программ конечных точек предлагают расширенные функции. Это все еще первый уровень безопасности, который просто защищает хост. Не все решения для защиты конечных точек или антивирусы, защищают от угроз, связанных, например с электронной почтой. Проще говоря, организация не может полагаться только на один подход для защиты своих активов, ей нужен многоуровневый подход, известный как Глубокая защита (Defense in Depth - DiD). Стратегия DiD подразумевает, что один уровень безопасности не должен использоваться в качестве единственной меры противодействия кибератакам. Если этот единственный уровень не сможет защитить сеть, тогда все (активы) будут открыты для взлома хакерами. В DiD реализован многоуровневый подход для защиты всех активов от различных типов кибератак, где, если один уровень не может защитить актив, то есть другой уровень для обеспечения безопасности. Эту тактику наслаивания придумали в Агентстве национальной безопасности (NSA) как комплексный подход к информационной и электронной безопасности. А изначально - это военная стратегия, которая направлена на то, чтобы заставить атакующего тратить как можно больше времени на преодоление каждого уровня защиты, нежели предотвратить наступление противника. Концепция Defense in Depth делит организацию защиты инфраструктуры на три контролируемые части: Физическая: сюда относятся все меры по ограничению физического доступа к ИТ-инфраструктуре неавторизованных лиц. Например, охранник офиса, системы СКУД, камеры видеонаблюдения, сигнализация, телекоммуникационные шкафы с замками и так далее. Техническая: сюда относятся все хардварные и софтовые средства защиты информации, призванные контролировать сетевой доступ к объектам информационной системы, межсетевой экран, средства антивирусной защиты рабочих станций, прокси-серверы, системы аутентификации и авторизации. Административная: сюда относятся все политики и процедуры информационной безопасности, принятые в организации. Данные документы призваны регулировать управление защитой, распределение и обработку критичной информации, использование программных и технических средств в компании, а также взаимодействие сотрудников с информационной системой, сторонними организациями и другими внешними субъектами. Многоуровневый подход -это как защита короля в его замке. Если произойдет нападение, захватчикам потребуется пройти несколько уровней обороны, включая стражей на входе и другие препятствия, прежде чем они смогут добраться до короля (актива). Чтобы лучше понять важность DiD, давайте углубимся в изучение трех основных принципов информационной безопасности, так называемой триады CIA: Конфиденциальность (Confidentiality) Целостность (Integrity) Доступность (Availability) Каждый принцип играет жизненно важную роль в обеспечении информационной безопасности любой организации. В следующем подразделе вы узнаете о характеристиках конфиденциальности, целостности и доступности, а также о том, как они используются в отрасли для обеспечения безопасности наших сетей. Конфиденциальность Поскольку все больше людей подключаются к сетям и обмениваются информацией, будь то их частная сеть дома, корпоративная сеть в офисе или даже Интернет, конфиденциальность является серьезной проблемой. Каждый день организации генерируют новые данные, отправляя и получая сообщения между устройствами. Представьте себе организацию, которая использует электронную почту в качестве единственной платформы обмена сообщениями. Каждый человек создает сообщение электронной почты, которое является данными, и эти данные используют некоторое пространство для хранения в локальной системе. Когда адресат получает электронное письмо, оно сохраняется на компьютере получателя. Важно, чтобы сообщение получили только те, кому оно адресовано, посторонние лица его увидеть не должны. Когда эти данные передаются по сети, их также можно перехватить. Поэтому специалист по безопасности также должен принимать во внимание следующие вопросы: является ли соединение безопасным? Является ли протокол связи безопасным? Является ли сеть безопасной? Конфиденциальность (Confidentiality) гарантирует, что сообщения и другие данные будут храниться в тайне от посторонних лиц или устройств. В области информационных технологий конфиденциальность реализуется в виде шифрования данных. Люди используют устройства для выполнения задач, будь то отправка электронной почты, загрузка файла или даже отправка сообщения в мессенджере со смартфона. Важно всегда защищать эти сообщения. Данные обычно существуют в следующих состояниях: Данные в состоянии покоя Данные в движении (транзит) Используемые данные Данные в состоянии покоя — это данные, которые не используются ни приложением, ни системой. В данный момент они хранятся на носителях, таких как жесткий диск (HDD) в локальной или удаленной системе. Когда данные находятся в состоянии покоя, они уязвимы для злоумышленников, пытающихся либо украсть, либо изменить их. Специалисты по безопасности реализуют как методы аутентификации, так и алгоритмы шифрования для защиты любых данных в состоянии покоя. Примером может служить использование BitLocker в операционной системе Microsoft Windows 10, которая позволяет администратору создавать зашифрованный контейнер, а затем пользователь может поместить файлы в эту специальную область памяти и заблокировать ее. После того, как содержимое BitLocker заблокировано (закрыто) пользователем, и контейнер, и его содержимое шифруются. Следовательно, доступ предоставляется только в том случае, если пользователь предоставляет правильные учетные данные для открытия и расшифровки содержимого. Если злоумышленник украдет зашифрованный контейнер, он не сможет просмотреть содержимое из-за шифрования данных. Данные в движении определяются как данные, которые передаются между источником и пунктом назначения. Представьте, что есть сотрудники, которые работают дистанционно или работают в удаленном месте вдали от офиса. Этим людям может потребоваться часто подключаться к корпоративной сети для доступа к сетевым ресурсам, например, при доступе или работе с документами, находящимися на файловом сервере. Как специалисты в области кибербезопасности, мы должны быть осведомлены о том, какие типы защиты или механизмы безопасности существуют для защиты данных, передаваемых между устройством пользователя и файловым сервером. Кроме того, устройства отправляют и получают сообщения почти каждую секунду, и некоторые из этих сообщений обмениваются с использованием небезопасных протоколов, что позволяет злоумышленнику перехватывать сообщения (данные) по мере их передачи по сети. Если данные передаются по сети в незашифрованном формате, злоумышленник может увидеть все содержимое в виде открытого текста и собрать конфиденциальную информацию, такую как логины и пароли. Это всего лишь несколько возможных ситуаций, которые могут возникнуть, когда данные находятся в движении. Некоторые рекомендуемые действия заключаются в том, чтобы всегда, когда это возможно, использовать защищенные сетевые протоколы и гарантировать, что удаленные сотрудники, используют виртуальную частную сеть (VPN) для шифрования трафика между устройством пользователя и корпоративной сетью. Чтобы лучше понять необходимость VPN, представьте, что организация имеет несколько филиалов и хочет «расшарить» ресурсы из головного офиса в удаленный филиал. Использование Интернета небезопасно, особенно для передачи корпоративных данных между филиалами. Одним из решений может быть использование Wide Area Network (WAN), предоставляемой интернет-провайдером (ISP). Если организация решает использовать WAN, это означает, что за эту услугу придется платить, а для некоторых компаний это решение может оказаться не по карману. В качестве альтернативы, если организация имеет подключение к Интернету и брандмауэры находятся в каждом офисе, специалист по безопасности может настроить VPN между двумя устройствами брандмауэра. Этот тип VPN известен как site-to-site VPN. На следующем рисунке показано представление site-to-site VPN: Как показано на рисунке, site-to-site VPN устанавливает безопасное зашифрованное соединение между головным офисом и удаленными филиалами через Интернет. Следовательно, любые сообщения, которые перемещаются между офисами, шифруются и отправляются через туннель VPN, защищая сообщения от неавторизованных пользователей. Существует также другой тип VPN - с удаленным доступом (remote access VPN). Этот тип позволяет пользователю установить VPN-туннель между конечным устройством, таким как ноутбук, и брандмауэром организации. Этот тип VPN позволяет сотрудникам, работающим дома или на ходу, безопасно подключаться к сети организации и получать доступ к сетевым ресурсам. Имейте в виду, что на устройстве сотрудника должен быть установлен VPN-клиент, который используется для установления безопасного соединения между компьютером и корпоративным брандмауэром. На следующем рисунке приведен пример VPN с удаленным доступом: Используемые данные — это данные, к которым в данный момент обращается или использует приложение. В этом состоянии данные наиболее уязвимы. В качестве примера используемых данных представьте, что вы открываете PDF-документ с помощью приложения для чтения PDF-файлов. Прежде чем приложение сможет успешно открыть файл PDF, документ необходимо расшифровать, если файл защищен паролем. После ввода правильного пароля документ будет представлен пользователю в незашифрованном виде. Важно обеспечить постоянную безопасность системы и приложений, которые обращаются к данным и/или используют их. Таким образом, конфиденциальность — это защита ваших активов от посторонних лиц или устройств. Целостность Целостность (Integrity) играет важную роль в нашей повседневной жизни, это степень сформированности, собранности, проявление гармонии соотношения и взаимодействия частей. Вышло немного по-философски, но тот же принцип необходим и в сети. Представьте, что вы получили письмо от друга через местное отделение почты и открыв его, кажется, что с его содержимым все в порядке. Как получатель, вы могли бы предположить, что содержимое письма осталось неизменным в процессе доставки, но как вы можете проверить, было ли содержимое изменено человеком или устройством по пути? В сети очень важно обеспечить, чтобы данные или сообщения не изменялись в процессе передачи между источником и получателем. В кибербезопасности используются специальные алгоритмы хеширования, чтобы помочь пользователям и устройствам проверить, было ли сообщение изменено или нет при его передаче. Алгоритмы хеширования создают односторонний криптографический хэш (дайджест, он же контрольная сумма), который является математическим представлением сообщения. Это означает, что только это сообщение может выдавать одно и то же хэш-значение. Алгоритмы хеширования создают одностороннюю функцию, которая делает практически невозможным изменение и определение содержимого самого сообщения. На следующем рисунке показан процесс хеширования сообщения: Как показано на рисунке, сообщение проходит через криптографический алгоритм, который создаёт одностороннюю хэш-функцию сообщения. Когда пользователь или устройство хочет отправить сообщение адресату, и сообщение, и его хеш-значение упаковываются вместе и отправляются по сети. Когда получатель получает входящее сообщение, он выполняет свою собственную функцию хеширования сообщения и вычисляет его хеш-значение. Затем получатель сравнивает хеш-значение, полученное от отправителя, с хеш-значением, которое он высчитал. Если оба значения хеш-функций совпадают, это означает, что сообщение не было изменено во время передачи и целостность сохранена. Однако, если хэши не совпадают, это указывает на то, что сообщение было подвергнуто изменению, и получатель просто удалит его. Помимо этого, хэширование также помогает убедиться в том, что сообщение не было искажено в результате каких-либо сбоев или неполадок в сети. Доступность Существуют типы кибератак, которые блокируют или затрудняют доступ законных пользователей к ресурсу. Другими словами, злоумышленники пытаются нарушить доступность (availability) данных и ресурсов. В области кибербезопасности доступность гарантирует, что данные и ресурсы всегда доступны для пользователей и систем, которым разрешен доступ к этим ресурсам. Простым примером кибератаки, которая может быть использована для нарушения доступности сети, является атака «распределенный отказ в обслуживании» Distributed Denial of Service (DDoS). Этот тип атаки запускается из нескольких географических точек и нацелен на одну систему или сеть. Злоумышленник направляет к объекту атаки огромное количество легитимных запросов или другого типа трафика, в результате чего, система перегружается и становится неспособной обработать запросы от других пользователей. Цель состоит в том, чтобы сделать целевую систему или сеть непригодными для использования или недоступными для других пользователей. Cloudflare (www.cloudflare.com) обеспечивает неограниченную защиту от DDoS-атак для пользователей. Администратор может перенести свои записи DNS в Cloudflare для управления службами DNS. Таким образом, Cloudflare находится между общедоступным сервером и остальной частью Интернета. Если на ресурс будет направлен DDoS-трафик из любой точки мира, он должна будет проходить через сеть Cloudflare, что смягчит атаку. Возможно вы считаете, что для злоумышленников важно, чтобы сетевые ресурсы и данные были всегда доступны, чтобы их можно было взломать или украсть. Но на самом деле существуют злоумышленники, цель которых - сделать так, чтобы эти ресурсы не были больше доступны для пользователей. Просто представьте что злоумышленник взломает систему управления энергосистемой вашего города или района. Если хакеру удастся отключить эту систему, то не будет электричества, и это затронет большинство потребителей и организаций. В таких ситуациях важно, чтобы специалисты внедрили меры безопасности, которые смогут защитить критически важные процессы, системы и сети от взлома. Объединение трех принципов Некоторые организации ставят одни принципы выше других. Например, компания может больше внимание уделять на защите своих данных с помощью различных систем аутентификации и шифрования. Этот принцип фокусируется на конфиденциальности. Сосредоточение внимания на одном компоненте, таком как конфиденциальность, в большей степени, чем на других, повлечет меньшее внимание к другим - целостности и/или доступности. Вы можете задаться вопросом: и в чём здесь проблема? Представьте себе, что организация применяет самые строгие меры безопасности для предотвращения любого несанкционированного доступа к своим системам и сети. Чтобы авторизованный пользователь мог получить доступ к этим ресурсам, ему необходимо будет предоставить, возможно, несколько проверок своей личности, например, при многофакторной аутентификации (MFA), и даже пароли для открытия файлов. В результате доступ к ресурсам будет усложнен для всех, включая авторизованных пользователей, поэтому доступность немного пострадает. На следующем рисунке показана триада принципов и точка фокусировки в центре: Ключевой момент заключается в том, чтобы всегда обеспечивать баланс при реализации конфиденциальности, целостности и доступности в любой системе и сети. Важно уделять одинаковое внимание всем основным направлениям просто для того, чтобы не было недостатка ни в одном аспекте информационной безопасности.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59