По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Друг! Недавно в нашей статье мы рассказывали, как произвести базовую настройку телефонов в Cisco CME (CUCME) используя интерфейс командной строки. Сегодня мы сделаем то же самое, но уже при помощи графического интерфейса Cisco Configuration Professional (CCP) , про установку которого можно почитать здесь. /p> Добавление CME роутера в CCP Первым делом настроим наш роутер как CME. Для этого выбираем наш роутер в списке Select Community Member и нажимаем Configure и выбираем вкладку Unified Communications Features. Здесь нам будут доступны следующие опции: Cisco Unified Border Element (CUBE) – эта опция настраивает роутер как шлюз для IP телефонии для IP-IP сервисов, таких как IP Telephony Service Provision (IP-TSP). CUBE предоставляет типичные пограничные сервисы такие как NAT/PAT, и добавляет к ним VoIP функциональность для билинга, безопасности, контроля, QoS и прочего. IP Telephony – CUCME – CCP настраивает роутер как отдельную CME систему. IP Telephony – SRST – Позволяет IP телефонам использовать CME роутер как резервное устройство, если они потеряли связь с кластером CUCM. IP Telephony – Cisco Unified Call Manager Express as Cisco Unified Survivable Remote Site Telephony – предоставляет то же самое что и SRST, но с полным набором функций CME. Однако из-за этого уменьшается количество поддерживаемых телефонов. TDM Gateway – добавляет функционал шлюза, который может быть сконфигурирован вместо или совместно с CME. Media Resources – позволяет настроить цифровой сигнальный процессор DSP. Нам нужно поставить галочку IP Telephony, выбрать пункт CUCME – Cisco Unified Communications Manager Express, нажать ОК и затем в открывшемся окне нажать Deliver, после чего на маршрутизаторе будут произведены необходимые начальные настройки (какие именно команды будут применены можно увидеть в окне предпросмотра). Настройка Telephony Service Cisco предоставляет графический интерфейс для конфигурации ephone и ephone-dn (что это такое можно почитать тут). Однако просто взять и добавить ephone-dn (тут они называются “Extensions”) и ephone (они называются “Phones”) нельзя, интерфейс выдаст нам ошибку, что сначала нужно настроить Telephony Service Поэтому займемся настройкой Telephony Service. Чтобы это сделать нужно перейти в меню Configure – Unified Communications – Telephony Settings. Здесь нам необходимо настроить следующие поля: Supported Endpoints – какой протокол будут использовать телефоны (SIP, SCCP или оба) Maximum number of phones – максимальное количество ephone (команда max-ephones) Maximum number of extensions – максимальное количество ephone-dn (команда max-dn) Phone registration source IP address – адрес регистрации телефонов (команда ip source address) Иногда CCP может не обновлять конфигурацию CME, после внесения изменений. Если вы указали все необходимые настройки, но все еще получаете ошибку, что нужно настроить Telephony Settings, то в этом случае нужно вручную обновить конфигурацию, нажав кнопку Refresh. Если вы используете GNS3 для эмуляции роутера с CME, то при попытке войти в меню Telephony Settings будет появляться ошибка “An internal error has occurred”, и начальные настройки нужно ввести через интерфейс командной строки маршрутизатора. После того как мы заполнили поля нажимаем ОК, а затем Deliver. Теперь мы можем добавлять телефоны. Добавление телефонов, номеров и пользователей в CCP Начнем с добавления Extension, который технически является ephone-dn. Переходим во вкладку Configure – Unified Communications – Users, Phones and Extensions – Extensions и внизу нажимаем Create Здесь заполняем следующие поля: Primary Number – номер телефона (единственное обязательное поле) Secondary Number – дополнительный номер Name to be displayed on phone line – имя, которое будет отображаться на телефоне Description – описание Active calls allowed on a Phone Button – количество одновременных звонков (single-line или dual line) После заполнения нужных полей нажимаем ОК и Deliver, после чего телефон появляется в таблице с номерами. Теперь перейдем к настройке Phones. Для этого переходим во вкладку Configure – Unified Communications – Users, Phones, and Extensions – Phones (или Phones and Users, в зависимости от версии) и нажимаем Create. Здесь нам нужно заполнить два обязательных поля: модель телефона Cisco, который мы хотим добавить и его mac адрес, в формате xxxx.xxxx.xxxx . Внизу в столбце Available Extensions появятся созданные нами номера. Нам нужно перенести необходимый номер в правую таблицу, нажав кнопку со стрелкой вправо, выбрав номер линии и указав ее тип и тип звонка (в зависимости от версии CCP, привязка Phone к Extension может производиться в меню создания пользователя). В этом же окне мы можем создать пользователя. Используя свой аккаунт, пользователь может управлять настройками своего телефона через веб-интерфейс. Для этого переходим во вкладку User и указываем логин в строке User ID, а также пароль для входа. При создании юзера из этого меню, он будет ассоциирован с этим телефоном. В зависимости от версии CCP, может меняться местонахождение этой вкладки, и она может быть расположена в Configure – Unified Communications – Users, Phones, and Extensions – User Settings. Применяем настройки также нажатием клавиш ОК и Deliver. Также в CCP можно импортировать большое количество экстеншенов и телефонов в файлах .CSV через Bulk Import Wizard, который находится на панели справа. Также при помощи CCP можно проверить работоспособность системы и телефонов, через меню Configure – View – IOS Show Commands, где из выпадающего списка можно выбрать команду show и CCP отобразит ее вывод.
img
Продолжаем рассказывать про механизмы QoS (Quality of Service) . Мы уже рассказаывали про то, какие проблемы могут быть в сети и как на них может повлиять QoS. В этой статье мы поговорим про механизмы работы QoS. Механизмы QoS В связи с тем, что приложения могут требовать различные уровни QoS, возникает множество моделей и механизмов, чтобы удовлетворить эти нужды. Рассмотрим следующие модели: Best Effort –негарантированная доставка используется во всех сетях по умолчанию. Положительная сторона заключается в том, что эта модель не требует абсолютно никаких усилий для реализации. Не используются никакие механизмы QoS, весь трафик обслуживается по принципу “пришел первым – обслужили первым”. Такая модель не подходит для современных сетевых сред; Integrated Services (IntServ) – эта модель интегрированного обслуживания использует метод резервирования. Например, если пользователь хотел сделать VoIP вызов 80 Кбит/с по сети передачи данных, то сеть, разработанная исключительно для модели IntServ, зарезервировала бы 80 Кбит/с на каждом сетевом устройстве между двумя конечными точками VoIP, используя протокол резервирования ресурсов RSVP (Resource Reservation Protocol) . На протяжении звонка эти 80 Кбит/с будут недоступны для другого использования, кроме как для VoIP звонка. Хотя модель IntServ является единственной моделью, обеспечивающей гарантированную пропускную способность, она также имеет проблемы с масштабируемостью. Если сделано достаточное количество резервирований, то сеть просто исчерпает полосу пропускания; Differentiated Services (DiffServ) – модель дифференцированного обслуживания является самой популярной и гибкой моделью для использования QoS. В этой модели можно настроить каждое устройство так, чтобы оно могло использовать различные методы QoS, в зависимости от типа трафика. Можно указать какой трафик входит в определенный класс и как этот класс должен обрабатываться. В отличие от модели IntServ, трафик не является абсолютно гарантированным, поскольку сетевые устройства не полностью резервируют полосу пропускания. Однако DiffServ получает полосу, близкую к гарантированной полосе пропускания, в то же время решая проблемы масштабируемости IntServ. Это позволило этой модели стать стандартной моделью QoS; Инструменты QoS Сами механизмы QoS представляют собой ряд инструментов, которые объединяются для обеспечения уровня обслуживания, который необходим трафику. Каждый из этих инструментов вписывается в одну из следующих категорий: Классификация и разметка (Classification and Marking) - Эти инструменты позволяют идентифицировать и маркировать пакет, чтобы сетевые устройства могли легко идентифицировать его по мере пересечения сети. Обычно первое устройство, которое принимает пакет, идентифицирует его с помощью таких инструментов, как списки доступа (access-list), входящие интерфейсы или deep packet inspection (DPI), который рассматривает сами данные приложения. Эти инструменты могут быть требовательны к ресурсам процессора и добавлять задержку в пакет, поэтому после того как пакет изначально идентифицирован, он сразу помечается. Маркировка может быть в заголовке уровня 2 (data link), позволяя коммутаторам читать его и/или заголовке уровня 3 (network), чтобы маршрутизаторы могли его прочитать. Для второго уровня используется протокол 802.1P, а для третьего уровня используется поле Type of Service. Затем, когда пакет пересекает остальную сеть, сетевые устройства просто смотрят на маркировку, чтобы классифицировать ее, а не искать глубоко в пакете; Управление перегрузками (Congestion Management)– Перегрузки возникают, когда входной буфер устройства переполняется и из-за этого увеличивается время обработки пакета. Стратегии очередей определяют правила, которые маршрутизатор должен применять при возникновении перегрузки. Например, если интерфейс E1 WAN был полностью насыщен трафиком, маршрутизатор начнет удерживать пакеты в памяти (очереди), чтобы отправить их, когда станет доступна полоса пропускания. Все стратегии очередей направлены на то, чтобы ответить на один вопрос: “когда есть доступная пропускная способность, какой пакет идет первым?“; Избегание заторов (Congestion Avoidance) – Большинство QoS механизмов применяются только тогда, когда в сети происходит перегрузка. Целью инструментов избегания заторов является удаление достаточного количества пакетов несущественного (или не очень важного) трафика, чтобы избежать серьезных перегрузок, возникающих в первую очередь; Контроль и шейпинг (Policing and Shaping) – Этот механизм ограничивает пропускную способность определенного сетевого трафика. Это полезно для многих типичных «пожирателей полосы» в сети: p2p приложения, веб-серфинг, FTP и прочие. Шейпинг также можно использовать, чтобы ограничить пропускную способность определенного сетевого трафика. Это нужно для сетей, где допустимая фактическая скорость медленнее физической скорости интерфейса. Разница между этими двумя механизмами заключается в том, что shaping формирует очередь из избыточного трафика, чтобы выслать его позже, тогда как policing обычно сбрасывает избыточный трафик; Эффективность линков (Link Efficiency) – Эта группа инструментов сосредоточена на доставке трафика наиболее эффективным способом. Например, некоторые низкоскоростные линки могут работать лучше, если потратить время на сжатие сетевого трафика до его отправки (сжатие является одним из инструментов Link Efficiency); Механизмы Link Efficiency При использовании медленных интерфейсов возникают две основных проблемы: Недостаток полосы пропускания затрудняет своевременную отправку необходимого объема данных; Медленные скорости могут существенно повлиять на сквозную задержку из-за процесса сериализации (количество времени, которое маршрутизатору требуется на перенос пакета из буфера памяти в сеть). На этих медленных линках, чем больше пакет, тем дольше задержка сериализации; Чтобы побороть эти проблемы были разработаны следующие Link Efficiency механизмы: Сжатие полезной нагрузки (Payload Compression) – сжимает данные приложения, оправляемые по сети, поэтому маршрутизатор отправляет меньше данных, по медленной линии; Сжатие заголовка (Header Compression) – Некоторый трафик (например, такой как VoIP) может иметь небольшой объем данных приложения (RTP-аудио) в каждом пакете, но в целом отправлять много пакетов. В этом случае количество информации заголовка становится значимым фактором и часто потребляет больше полосы пропускания, чем данные. Сжатие заголовка решает эту проблему напрямую, устраняя многие избыточные поля в заголовке пакета. Удивительно, что сжатие заголовка RTP, также называемое сжатым транспортным протоколом реального времени (Compressed Real-time Transport Protocol - cRTP) уменьшает 40-байтовый заголовок до 2-4 байт!; Фрагментация и чередование (Link Fragmentation and Interleaving) - LFI решает проблему задержки сериализации путем измельчения больших пакетов на более мелкие части до их отправки. Это позволяет маршрутизатору перемещать критический VoIP-трафик между фрагментированными частями данных (которые называются «чередованием» голоса); Алгоритмы очередей Постановка в очереди (queuing) определяет правила, которые маршрутизатор должен применять при возникновении перегруженности. Большинство сетевых интерфейсов по умолчанию используют базовую инициализацию First-in, First-out (FIFO) . В этом методе сначала отправляется любой пакет, который приходит первым. Хотя это кажется справедливым, не весь сетевой трафик создается равным. Основная задача очереди - обеспечить, чтобы сетевой трафик, обслуживающий критически важные или зависящие от времени бизнес-приложения, отправлялся перед несущественным сетевым трафиком. Помимо очередности FIFO используются три первичных алгоритма очередности: Weighted Fair Queuing (WFQ)– WFQ пытается сбалансировать доступную полосу пропускания между всеми отправителями равномерно. Используя этот метод, отправитель с высокой пропускной способностью получает меньше приоритета, чем отправитель с низкой пропускной способностью; Class-Based Weighted Fair Queuing (CBWFQ) – этот метод массового обслуживания позволяет указать гарантированные уровни пропускной способности для различных классов трафика. Например, вы можете указать, что веб-трафик получает 20 процентов полосы пропускания, тогда как трафик Citrix получает 50 процентов пропускной способности (вы можете указать значения как процент или конкретную величину полосы пропускания). Затем WFQ используется для всего неуказанного трафика (остальные 30 процентов в примере); Low Latency Queuing (LLQ) - LLQ часто упоминается как PQ-CBWFQ, потому работает точно так же, как CBWFQ, но добавляется компонент приоритета очередей (Priority Queuing - PQ). Если вы указываете, что определенный сетевой трафик должен идти в приоритетную очередь, то маршрутизатор не только обеспечивает пропускную способность трафика, но и гарантирует ему первую полосу пропускания. Например, используя чистый CBWFQ, трафику Citrix может быть гарантированно 50% пропускной способности, но он может получить эту полосу пропускания после того, как маршрутизатор обеспечит некоторые другие гарантии трафика. При использовании LLQ приоритетный трафик всегда отправляется перед выполнением любых других гарантий. Это очень хорошо работает для VoIP, делая LLQ предпочтительным алгоритмом очередей для голоса; Существует много других алгоритмов для очередей, эти три охватывают методы, используемые большинством современных сетей
img
Вообще, трудно представить жизнь без Интернета. Почти в каждой квартире сегодня есть минимум один Интернет канал будь то оптика, ADLS, мобильный Интернет или даже спутниковый. Если раньше интернет был только на конце провода и, чтобы подключится к глобальной сети нужно было сидеть привязанным к розетке Ethernet кабеля, то сейчас эту проблему решила технология Wi-Fi. Правда, с кабелем было как-то безопаснее, а вот Wi-Fi, если его не настроить нужным образом, не обеспечит нужного уровня надёжности. Другая проблема - мощность сигнала. С кабелем такой проблемы почти нет, особенно на близких расстояниях, но радиоволны -другая природа: они очень капризны. В этом материале речь пойдёт о том, как решить вышеуказанные проблемы. Для начала разберёмся, как и где следует устанавливать Wi-Fi маршрутизатор. В силу того, что радиоволны не очень любят помехи, а в квартире они всегда есть, то здесь нужно найти точку, где сигнал наиболее мощный. Для этого есть и специализированное оборудование, и программы, а самый доступный способ - это ноутбук. Устанавливаете туда специальное ПО, коих полно в интернете, просто в поисковике набираете Wi-Fi analyser, а затем, перемещая Wi-Fi устройство, выбираете оптимальное для вас место. На больших площадях можно подключить ещё одну Wi-Fi точку доступа, но это другая тема. Нужно обратить внимание на то, чтобы рядом с Wi-Fi маршрутизатором не было микроволновок, Bluetooth устройств и другого оборудования, работающего на радиочастотах. Например, микроволновые печи и беспроводные гарнитуры работают на тех же частотах, что и Wi-Fi 2.4 гГц. Поэтому они потенциальная помеха для нормальной работы Wi-Fi. Также следует иметь ввиду, что в многоквартирных домах у соседей тоже стоит Wi-Fi оборудование и, при стандартных настройках рабочие каналы этих устройств пересекаются. Это происходит из-за принципов работы самого устройства Wi-Fi. Дело в том, что основная частота в Wi-Fi маршрутизаторах делится на 13 каналов по 22 MHz каждая, а расстояние между каналами 5MHz. Каждый канал имеет нижнюю, центральную и верхнюю частоты. Когда верхняя частота первого канала пересекается с нижней частотой второго, то получается так называемая интерференция. Но в 2.4 GHz полосе частот есть три канала, которые не пересекаются: 1, 6, 11. Канал Нижняя частота Центральная частота Верхняя частота 1 2.401 2.412 2.423 6 2.426 2.437 2.448 11 2.451 2.462 2.473 Как видно из таблицы, верхние и нижние частоты указанных каналов не имеют общих частот. Поэтому рекомендуется в настройка маршрутизатора вручную выставлять один из этих каналов. На маршрутизаторах TP-Link это делает во вкладке Беспроводной режим (внешний вид интерфейса может отличаться в зависимости от модели оборудования) : Здесь из выпадающего списка каналов выбирается один из указанных выше. По умолчанию стоит Авто. А теперь перейдём к настройкам подключения к Интернету и безопасности. Первым делом рекомендуем сменить имя пользователя и пароли по умолчанию. Это предотвращает несанкционированный доступ к вашему устройству. Делается это на вкладке Системные инструменты->Пароль: Сейчас поговорим о подключении к Интернету, затем опять вернёмся к настройкам безопасности. Почти любое оборудование предоставляет мастера настройки, который позволяет простым кликом мыши настроить доступ в глобальную сеть: Нажимаем Далее и выставляем нужные значения. Тип подключения зависит от провайдера: Здесь в зависимости от вида услуги отмечаете нужную опцию. Если ADSL подключение, то выбираем PPPoE/PPPoE Россия. PPPoE это сетевой протокол канального уровня. Вкратце, здесь организовывается Point-to-Point туннель поверх Ethernet, а уже в туннель инкапсулируется трафик разных протоколов, IP в том числе. Если выбрали Динамический IP-адрес, то мастер переходит к пункту клонирование MAC адреса. Это нужно если вы уже подключались к сети провайдера напрямую через ноутбук, а теперь нужно подключить маршрутизатор. Но чаще всего эта функция не используется: В остальных случаях нужно вводить дополнительные данные. В случае PPPoE это логин и пароль, которые вы получили у провайдера. Далее переходим к настройке беспроводного подключения: После этого мастер переходит к финальному пункту, где просто нужно нажать на кнопку Завершить и настройки начнут применяться. А теперь снова о безопасности. Далее нам нужно отключить WPS. Эта функция позволяет быстро добавлять новые устройства, но такие программы как Dumpper используют эту возможность для взлома беспроводной сети. На первом пункте вкладки Беспроводной режим убираем галочку перед Включить широковещание SSID. В этом случае маршрутизатор не будет вещать свой SSID (название Wi-Fi), тогда вам придётся вручную вводить кроме пароля еще и название сети. Больше движений, зато безопасно. Так как та же программа Dumpper не сможет обнаружить вашу сеть, что усложнит её взлом: На пункте Защита беспроводного режима вкладки Беспроводной режим настраиваются параметры шифрования. Так как на рисунках все подробно описано, не буду вдаваться в подробности каждого пункта. Здесь установлены рекомендуемые настройки для домашней сети (пароль выбираем посложнее) Фильтрация MAC-адресов позволяет ограничивать подключение чужих устройств к вашей беспроводной сети. Выбираем Разрешить доступ станциям, указанным во включённых списках. Затем добавляете MAC-адреса устройств, которым разрешено подключаться к сети. MAC-адреса устройств можно посмотреть в настройках самих устройств или же, если уже подключены к вашей сети, можно просмотреть на вкладке DHCP -> Список клиентов DHCP. На вкладке Безопасность настраиваем разрешения на локальное и удалённое управление Wi-Fi маршрутизатором. Локальное управление лучше ограничивать для устройств, подключенных по Wi-Fi и разрешить только для конкретного устройства и только через физическое подключение. Для этого, если у вас есть ноутбук или ПК узнаем его MAC-адрес. На Windows машинах легче всего сделать это через командную строку набрав команду getmac. Вписываете полученное значение в строку MAC-1: Нажимаем сохранить и всё. Следует быть внимательным если на выводе консоли несколько значений. Если нет никаких виртуальных машин, а вы подключены через Ethernet порт, то перед MAC адресом указывается device id. Ну а если возникнут трудности можете просмотреть через Центр управления сетями и общим доступом на Панели управления, выбрав нужный адаптер и кликнув на кнопке Подробнее в открывшемся окне. Физический адрес и есть MAC-адрес. Удалённое управление лучше отключить: На этом, пожалуй, всё. Это базовые настройки безопасности. При необходимости можно прописать ACL (в зависимости от модели), настроить гостевую сеть, включить родительский контроль. Удачи!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59