По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Третья часть тут Поскольку трафик в реальном времени начал передаваться по сетям с коммутацией пакетов, QoS стал серьезной проблемой. Передача голоса и видео полагается на то, что сеть способна быстро переносить трафик между хостами (с низкой задержкой) и с небольшими колебаниями межпакетного разнесения (jitter). Дискуссии вокруг QoS фактически начались в первые дни сети с коммутацией пакетов, но достигли высшей точки примерно в то время, когда рассматривался ATM. На самом деле, одним из главных преимуществ ATM была возможность тщательно контролировать способ, которым обрабатывались пакеты, когда они передавались по сети с коммутацией пакетов. С провалом ATM на рынке, появились два направления идей о приложениях, которые требуют сильного контроля над jitter и delay: Эти приложения никогда не будут работать в сетях с коммутацией пакетов. Такого рода приложения всегда должны запускаться в отдельной сети. Это просто поиск правильного набора элементов управления QoS, чтобы позволить таким приложениям работать в сетях с коммутацией пакетов. Основное, что больше всего волновало большинство провайдеров и инженеров, была голосовая связь, и основной вопрос сводился к следующему: можно ли обеспечить приличную голосовую связь по сети, также передающей большие файлы и другой "nonreal - time" трафик? Были изобретены сложные схемы, позволяющие классифицировать и маркировать пакеты (называемые QoS-маркировкой), чтобы сетевые устройства знали, как правильно их обрабатывать. Картографические системы были разработаны для переноса этих маркировок QoS из одного типа сети в другой, и много времени и усилий было вложено в исследование механизмов массового обслуживания-порядка, в котором пакеты отправляются по интерфейсу. На рис. 1 показана примерная диаграмма одной системы QoS, и сопоставления между приложениями и маркировками QoS будет достаточно, чтобы проиллюстрировать сложность этих систем. Увеличение скорости связи оказывают двойной эффект на обсуждение QoS: Более быстрые каналы связи будут (это очевидно) нести больше данных. Поскольку любой отдельный голосовой и видеопоток становится сокращающейся частью общего использования полосы пропускания, необходимость строго сбалансировать использование полосы пропускания между различными приложениями стала менее важной. Время, необходимое для перемещения пакета из памяти в провод через микросхему, уменьшается с каждым увеличением пропускной способности. По мере того, как доступная пропускная способность увеличивалась, потребность в сложных стратегиях массового обслуживания для противодействия jitter становилась все менее значимой. Это увеличение скорости было дополнено новыми системами массового обслуживания, которые гораздо эффективнее управляют различными видами трафика, уменьшая необходимость маркировки и обработки трафика детализированным способом. Такое увеличение пропускной способности часто обеспечивалось переходом от медного волокна к стекловолокну. Оптоволокно не только обеспечивает большую полосу пропускания, но и более надежную передачу данных. Способ построения физических связей также эволюционировал, делая их более устойчивыми к поломкам и другим материальным проблемам. Вторым фактором, увеличивающим доступность полосы пропускания, стал рост Интернета. По мере того, как сети становились все более распространенными и более связанными, отказ одного канала оказывал меньшее влияние на объем доступной полосы пропускания и на потоки трафика по сети. Поскольку процессоры стали быстрее, появилась возможность разрабатывать системы, в которых отброшенные и задержанные пакеты будут иметь меньшее влияние на качество потока в реальном времени. Увеличение скорости процессора также позволило использовать очень эффективные алгоритмы сжатия, уменьшая размер каждого потока. На стороне сети более быстрые процессоры означали, что control plane могла быстрее вычислять набор loop-free путей через сеть, уменьшая как прямые, так и косвенные последствия сбоев связи и устройств. В конечном счете, хотя QoS все еще важен, его можно значительно упростить. Четырех-шести очередей часто бывает достаточно для поддержки даже самых сложных приложений. Если требуется больше, некоторые системы теперь могут либо проектировать потоки трафика через сеть, либо активно управлять очередями, чтобы сбалансировать сложность управления очередями и поддержки приложений. Централизованный Control Plane - есть ли смысл? В 1990-х годах, чтобы решить многие из предполагаемых проблем с сетями с коммутацией пакетов, таких как сложные плоскости управления и управление QoS, исследователи начали работать над концепцией, называемой активной сетью. Общая идея состояла в том, что плоскость управления для сети с коммутацией пакетов может и должна быть отделена от устройств пересылки, чтобы позволить сети взаимодействовать с приложениями, запущенными поверх нее. Базовая концепция более четкого разделения плоскостей управления и данных в сетях с коммутацией пакетов была вновь рассмотрена при формировании рабочей группы по переадресации и разделению элементов управления (ForCES) в IETF. Эта рабочая группа в основном занималась созданием интерфейса, который приложения могли бы использовать для установки пересылки информации на сетевые устройства. Рабочая группа была в конечном итоге закрыта в 2015 году, и ее стандарты никогда не применялись широко. В 2006 году исследователи начали эксперимент с плоскостями управления в сетях с коммутацией пакетов без необходимости кодирования модификаций на самих устройствах- особая проблема, поскольку большинство этих устройств продавались поставщиками как неизменяемые устройства (или black boxes). Конечным результатом стал OpenFlow, стандартный интерфейс, который позволяет приложениям устанавливать записи непосредственно в таблицу пересылки (а не в таблицу маршрутизации). Исследовательский проект был выбран в качестве основной функции несколькими поставщиками, и широкий спектр контроллеров был создан поставщиками и проектами с открытым исходным кодом. Многие инженеры считали, что технология OpenFlow позволила бы реконструировать инженерные сети за счет централизации управления. В реальности, все будет по-иному-то, что, скорее всего, произойдет в мире сетей передачи данных: лучшие части централизованной control plane будут поглощены существующими системами, а полностью централизованная модель будет выброшена на обочину, оставив на своем пути измененные представления о том, как control plane взаимодействует с приложениями и сетью в целом.
img
Вообще, трудно представить жизнь без Интернета. Почти в каждой квартире сегодня есть минимум один Интернет канал будь то оптика, ADLS, мобильный Интернет или даже спутниковый. Если раньше интернет был только на конце провода и, чтобы подключится к глобальной сети нужно было сидеть привязанным к розетке Ethernet кабеля, то сейчас эту проблему решила технология Wi-Fi. Правда, с кабелем было как-то безопаснее, а вот Wi-Fi, если его не настроить нужным образом, не обеспечит нужного уровня надёжности. Другая проблема - мощность сигнала. С кабелем такой проблемы почти нет, особенно на близких расстояниях, но радиоволны -другая природа: они очень капризны. В этом материале речь пойдёт о том, как решить вышеуказанные проблемы. Для начала разберёмся, как и где следует устанавливать Wi-Fi маршрутизатор. В силу того, что радиоволны не очень любят помехи, а в квартире они всегда есть, то здесь нужно найти точку, где сигнал наиболее мощный. Для этого есть и специализированное оборудование, и программы, а самый доступный способ - это ноутбук. Устанавливаете туда специальное ПО, коих полно в интернете, просто в поисковике набираете Wi-Fi analyser, а затем, перемещая Wi-Fi устройство, выбираете оптимальное для вас место. На больших площадях можно подключить ещё одну Wi-Fi точку доступа, но это другая тема. Нужно обратить внимание на то, чтобы рядом с Wi-Fi маршрутизатором не было микроволновок, Bluetooth устройств и другого оборудования, работающего на радиочастотах. Например, микроволновые печи и беспроводные гарнитуры работают на тех же частотах, что и Wi-Fi 2.4 гГц. Поэтому они потенциальная помеха для нормальной работы Wi-Fi. Также следует иметь ввиду, что в многоквартирных домах у соседей тоже стоит Wi-Fi оборудование и, при стандартных настройках рабочие каналы этих устройств пересекаются. Это происходит из-за принципов работы самого устройства Wi-Fi. Дело в том, что основная частота в Wi-Fi маршрутизаторах делится на 13 каналов по 22 MHz каждая, а расстояние между каналами 5MHz. Каждый канал имеет нижнюю, центральную и верхнюю частоты. Когда верхняя частота первого канала пересекается с нижней частотой второго, то получается так называемая интерференция. Но в 2.4 GHz полосе частот есть три канала, которые не пересекаются: 1, 6, 11. Канал Нижняя частота Центральная частота Верхняя частота 1 2.401 2.412 2.423 6 2.426 2.437 2.448 11 2.451 2.462 2.473 Как видно из таблицы, верхние и нижние частоты указанных каналов не имеют общих частот. Поэтому рекомендуется в настройка маршрутизатора вручную выставлять один из этих каналов. На маршрутизаторах TP-Link это делает во вкладке Беспроводной режим (внешний вид интерфейса может отличаться в зависимости от модели оборудования) : Здесь из выпадающего списка каналов выбирается один из указанных выше. По умолчанию стоит Авто. А теперь перейдём к настройкам подключения к Интернету и безопасности. Первым делом рекомендуем сменить имя пользователя и пароли по умолчанию. Это предотвращает несанкционированный доступ к вашему устройству. Делается это на вкладке Системные инструменты->Пароль: Сейчас поговорим о подключении к Интернету, затем опять вернёмся к настройкам безопасности. Почти любое оборудование предоставляет мастера настройки, который позволяет простым кликом мыши настроить доступ в глобальную сеть: Нажимаем Далее и выставляем нужные значения. Тип подключения зависит от провайдера: Здесь в зависимости от вида услуги отмечаете нужную опцию. Если ADSL подключение, то выбираем PPPoE/PPPoE Россия. PPPoE это сетевой протокол канального уровня. Вкратце, здесь организовывается Point-to-Point туннель поверх Ethernet, а уже в туннель инкапсулируется трафик разных протоколов, IP в том числе. Если выбрали Динамический IP-адрес, то мастер переходит к пункту клонирование MAC адреса. Это нужно если вы уже подключались к сети провайдера напрямую через ноутбук, а теперь нужно подключить маршрутизатор. Но чаще всего эта функция не используется: В остальных случаях нужно вводить дополнительные данные. В случае PPPoE это логин и пароль, которые вы получили у провайдера. Далее переходим к настройке беспроводного подключения: После этого мастер переходит к финальному пункту, где просто нужно нажать на кнопку Завершить и настройки начнут применяться. А теперь снова о безопасности. Далее нам нужно отключить WPS. Эта функция позволяет быстро добавлять новые устройства, но такие программы как Dumpper используют эту возможность для взлома беспроводной сети. На первом пункте вкладки Беспроводной режим убираем галочку перед Включить широковещание SSID. В этом случае маршрутизатор не будет вещать свой SSID (название Wi-Fi), тогда вам придётся вручную вводить кроме пароля еще и название сети. Больше движений, зато безопасно. Так как та же программа Dumpper не сможет обнаружить вашу сеть, что усложнит её взлом: На пункте Защита беспроводного режима вкладки Беспроводной режим настраиваются параметры шифрования. Так как на рисунках все подробно описано, не буду вдаваться в подробности каждого пункта. Здесь установлены рекомендуемые настройки для домашней сети (пароль выбираем посложнее) Фильтрация MAC-адресов позволяет ограничивать подключение чужих устройств к вашей беспроводной сети. Выбираем Разрешить доступ станциям, указанным во включённых списках. Затем добавляете MAC-адреса устройств, которым разрешено подключаться к сети. MAC-адреса устройств можно посмотреть в настройках самих устройств или же, если уже подключены к вашей сети, можно просмотреть на вкладке DHCP -> Список клиентов DHCP. На вкладке Безопасность настраиваем разрешения на локальное и удалённое управление Wi-Fi маршрутизатором. Локальное управление лучше ограничивать для устройств, подключенных по Wi-Fi и разрешить только для конкретного устройства и только через физическое подключение. Для этого, если у вас есть ноутбук или ПК узнаем его MAC-адрес. На Windows машинах легче всего сделать это через командную строку набрав команду getmac. Вписываете полученное значение в строку MAC-1: Нажимаем сохранить и всё. Следует быть внимательным если на выводе консоли несколько значений. Если нет никаких виртуальных машин, а вы подключены через Ethernet порт, то перед MAC адресом указывается device id. Ну а если возникнут трудности можете просмотреть через Центр управления сетями и общим доступом на Панели управления, выбрав нужный адаптер и кликнув на кнопке Подробнее в открывшемся окне. Физический адрес и есть MAC-адрес. Удалённое управление лучше отключить: На этом, пожалуй, всё. Это базовые настройки безопасности. При необходимости можно прописать ACL (в зависимости от модели), настроить гостевую сеть, включить родительский контроль. Удачи!
img
В этой статье вы узнаете о различных инструментах управления Kubernetes, которые можно использовать для управления кластерами Kubernetes. В формирующейся облачной инфраструктуре Kubernetes повсюду, без сомнения, он стал стандартом для оркестрации контейнеров. Но обеспечение согласованной и безопасной работы нескольких кластеров Kubernetes, представляет собой новый набор проблем. Поэтому возникает потребность в инструментах управления Kubernetes. Давайте рассмотрим некоторые популярные решения для эффективного управления Kubernetes. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? 1. K9s k9s - панель мониторинга ресурсов на основе терминалов. Он имеет только интерфейс командной строки. Все что делали через веб-интерфейс панели мониторинга Kubernetes, вы можете сделать с помощью этой утилиты панели мониторинга терминала k9s. Он постоянно следит за кластером Kubernetes и предлагает команды для работы с определенными ресурсами кластера. Ниже приведены K9s функции: Отслеживание состояния кластера в реальном времени Настройка вида с помощью обложек K9s Легкий переход между ресурсами Kubernetes Параметры развертывания для проверки проблем с ресурсами кластера Предоставляет расширенные подключаемые модули для создания собственных команд 2. Rancher Rancher - платформа управления контейнерами с открытым исходным кодом, которая позволяет любому предприятию легко перенять Kubernetes. Вы можете развертывать и управлять облачными кластерами Kubernetes, работающими в GKE (GCP), EKS (AWS), AKS (Azure), или просто развертывать Kubernetes на виртуальных или физических машинах на ваш выбор. Rancher упрощает все повседневные обязанности администратора, включая: Мониторинг работоспособности кластеров Настройка оповещений и уведомлений Включение централизованного ведения журнала Определение и применение глобальных политик безопасности Установление аутентификации и применение наших политик обратной связи Управление инфраструктурой и ее масштабирование По мере ускорения внедрения Kubernetes в вашей компании, Кancher поощряет быстрое внедрение предоставления пользователям доступа непосредственно к Kubernetes API и CLI. Новый интеллектуальный интерфейс Rancher упрощает управление приложениями; команды могут легко развертывать рабочие нагрузки и управлять ими, определять объекты типа Секрет и управлять частными репозиториями, настраивать требования постоянных томов, настраивать балансировку нагрузки и обнаружение служб, управлять конвейерами CI. 3. Dashboard + Kubectl + Kubeadm Панель управления Kubernetes представляет собой веб-интерфейс для развертывания контейнерных приложений. Он ищет и устраняет неисправности приложений и управляет кластером вместе с ресурсами. С помощью панели мониторинга можно получить обзор приложений, запущенных в кластере, а также создать или изменить отдельные ресурсы Kubernetes, такие как задания развертывания, наборы реплик и многое другое. Можно масштабировать развертывание или инициировать скользящее обновление, или даже перезапустить модуль или развернуть новые приложения с помощью мастера развертывания на панели мониторинга. Kubectl - это средство командной строки для взаимодействия со службой API и отправки команд на главный узел. Его скрытые команды для вызовов API на сервер cluster API Kubernetes. Kubeadm - это инструмент со встроенными командами для запуска минимального кластера Kubernetes. Он используется для начальной загрузки кластера, а не для подготовки компьютеров. С помощью kubeadm можно выполнить некоторые основные команды для загрузки кластера, создания маркера для присоединения к кластеру, возврата изменений, внесенных в кластер Kubernetes, и т.д. 4. Helm Helm - менеджер пакетов для Kubernetes. Она позволяет разработчикам и операторам упаковывать, настраивать и развертывать приложения и службы в кластере Kubernetes. Он дает операторам больший контроль над кластерами Kubernetes, которые включают: Упрощение, стандартизацию и многократное использование развертывания приложений Простое описание сложных приложений с помощью диаграмм helm Повышение производительности разработчиков Снижение сложности развертывания Повышает эксплуатационную готовность Ускорение внедрения облачных приложений Упрощает откат к предыдущей версии Helm использует диаграммы, содержащие все определения ресурсов, для запуска приложений или служб в кластере Kubernetes. Здесь можно найти несколько helm диаграмм. 5. KubeSpray KubeSpray - это диспетчер жизненного цикла кластера, который помогает развернуть готовый к эксплуатации кластер Kubernetes. Для автоматизации выделения ресурсов кластеров Kubernetes используется ansible-playbook. Вот некоторые функции, которые включает в себя KubeSpray: Основан на Ansible Высокая доступность Кроссплатформенность Уровень производства Возможность интеграции как с популярными поставщиками облачных инфраструктур, так и с железом Различные опции конфигурации Много платформенный CI/CD Безопасность по умолчанию По умолчанию Kubespray позволяет удаленно подключаться к кластеру Kubernetes через IP-адрес kube-master и порт 6443. Kubespray лучше всего подходит, если вам нужна гибкость в развертывании; он предоставляет множество пользовательских опций конфигурации. Также, если вы знакомы с Ansible, то использование Kubespray вам покажется очень простым. 6. Kontena Lens Kontena Lens - умная приборная панель для Kubernetes. Это единственная система управления, которая вам понадобится, чтобы взять под контроль ваш Kubernetes. Он бесплатно доступен для операционных систем Mac OS, Windows и Linux. После запуска приложения Lens в интерфейсе появится список всех связанных кластеров. Это самая мощная IDE для людей, которые действительно должны иметь дело с Kubernetes ежедневно. Вы можете обеспечить правильную настройку и настройку кластеров, а также более простую и быструю работу с кластерами и радикальное повышение производительности и скорости бизнеса. Функции IDE Kontena Lens: Возможность управления несколькими кластерами одновременно Визуализация состояния кластера в реальном времени Предоставляет встроенный терминал Очень простая установка, поскольку это автономное приложение Потрясающие возможности пользовательского интерфейса и пользователя Поддерживается Kubernetes RBAC. Протестировано для обработки почти 25K модулей в кластере Kubernetes - это сложный инструмент, и Lens IDE помогает даже новичкам легко начать работу с Kubernetes. Это один из лучших инструментов для управления и визуализации кластеров Kubernetes. 7. WKSctl WKSctl обозначает управление системой Weave Kubernetes. Является частью Wave Kubernetes Platform. WKSctl - это инструмент, использующий GitOps для управления конфигурацией Kubernetes. GitOps - это не что иное, как набор практик, которые используют запросы git для управления приложениями и инфраструктурой традиционным способом. С помощью WKSctl можно управлять кластерами Kubernetes через Git commits. Можно обновить кластер, добавлять или удалять узлы из кластера. Этот инструмент можно запускать в 2 режимах: автономном и режиме GitOps. В автономном режиме создается статический кластер. В режиме GitOps он настраивает кластер в соответствии с данными cluster.yml и machines.yml, имеющимися в git. Функции WKSctl: Быстрый запуск кластера с git Откат в случае сбоя развертывания Регистрация изменения для рассмотрения и аудита Для создания кластера требуются только IP-адрес и ключи ssh Непрерывная проверка и корректировка состояние кластера Заключение Это был краткий обзор популярных инструментов управления Kubernetes кластерами. Выберите любой из вышеупомянутых инструментов и опробуйте его на своем кластере Kubernetes!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59