По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня поговорим о процессе настройки модуля Callback в FreePBX 13. Как настроить и использовать данный модуль и читайте ниже. Что это? Коллбэк (callback) - функционал обратного звонка, который меняет направление вызова на "обратное" - исходящий звонок от абонента путём сброса вызова становится входящим для абонента, то есть IP - АТС набирает номер позвонившего. Вы спросите, зачем это надо? Данный функционал обычно используется для уменьшения счетов у мобильных операторов и/или счетов при международных звонках. Как правило, вызов данной функции совершается из IVR-меню или настраивается входящий маршрут на CallBack. Настройка CallBack в FreePBX Первый шаг крайне прост – в веб-интерфейсе необходимо открыть следующую вкладку: Applications – Callback. Перейдя в меню настройки модуля, нажмите на кнопку + Add Callback Переходим к настройке доступных опций Сallback Description – описание вашего коллбэка, полезно если несколько коллбэков используются на вашей АТС Callback Number – опциональное поле, если оставить пустым, то АТС совершит вызов по номеру, с которого до этого пришёл вызов. В ином случае, АТС совершит вызов по номеру, указанному в данном поле Delay Before Callback – опциональное поле, интервал (в секундах) между активацией модуля и совершением вызова с АТС. По умолчанию интервал равен нулю Destination after Callback – маршрутизация вызова после звонка: к примеру можно направить вызов на требуемый номер/ринг-группу/IVR-меню и так далее Созданные коллбэки можно редактировать и удалять, если, к примеру, при его создании вы в чём-то ошиблись.
img
Привет! В предыдущей статье мы рассказывали как установить Asterisk 14.3.0 из “исходных файлов” . Теперь давайте дополним его красивым, удобным графическим интерфейсом. Итак, в данной статье покажем, как установить графический интерфейс FreePBX 13 на Asterisk 14 также из “источников”. Напомню, в качестве операционной системы для сервера Asterisk мы выбрали CentOS 7. Поехали! Подготовка Первым делом, установим стандартные правила Firewall. Для того, чтобы получить доступ к графическому web-интерфейсу, необходимо открыть 80 порт (http). Подключаемся к консоли сервера от пользователя root и вводим следующие команды: firewall-cmd --zone=public --add-port=80/tcp --permanent firewall-cmd –-reload Включаем MariaDB (MySQL). Для того, чтобы корректно работать, FreePBX будет необходим постоянно работающий сервис mariadb и запускаться он должен автоматически: systemctl enable mariadb.service systemctl start mariadb После того, как сервис mariadb успешно запущен, можно запустить скрипт, который позволит ограничить доступ к сервису и убрать некоторые нежелательные разрешения: mysql_secure_installation В качестве web-сервера, FreePBX использует Apache Web Server, поэтому необходимо запустить соответствующий сервис следующими командами: systemctl enable httpd.service systemctl start httpd.service Теперь вносим следующие модификации в для Apache: sed -i 's/(^upload_max_filesize = ).*/120M/' /etc/php.ini sed -i 's/^(User|Group).*/1 asterisk/' /etc/httpd/conf/httpd.conf sed -i 's/AllowOverride None/AllowOverride All/' /etc/httpd/conf/httpd.conf И перезагружаем сервис: systemctl restart httpd.service Установка и настройка FreePBX 13 Теперь, всё готово к установке. Открываем директорию из которой будем производить установки и скачиваем последнюю версию FreePBX: cd /usr/src wget http://mirror.freepbx.org/modules/packages/freepbx/freepbx-13.0-latest.tgz Дожидаемся, пока все файлы буду загружены и приступаем к установке: cd /usr/src tar xfz freepbx-13.0-latest.tgz rm -f freepbx-13.0-latest.tgz cd freepbx ./start_asterisk start ./install –n Проблема Решение Reading /etc/asterisk/asterisk.conf...Error! Unable to read /etc/asterisk/asterisk.conf or it was missing a directories section Если вы столкнулись с данной проблемой, то проверьте файл asterisk.conf, который лежит в директории /etc/asterisk. В данном файле уберите символ (!) напротивs строки [directories] Checking if Asterisk is running and we can talk to it as the 'asterisk' user...Error! Error communicating with Asterisk. Ensure that Asterisk is properly installed and running as the asterisk user Asterisk does not appear to be running Try starting Asterisk with the './start_asterisk start' command in this directory Убедитесь, что сервис Asterisk запущен командой service asterisk start Invalid Database Permissions. The error was: SQLSTATE[28000] [1045] Access denied for user 'root'@'localhost' (using password: NO) Запустите ./install вместо ./install -n и введите все параметры вручную. В частности, обратите внимание, когда система попросит пароль к базе данных database password пароль должен быть пустым. Если же ошибка не уходит, попробуйте ввести пароль root пользователя Error(s) have occured, the following is the retrieve_conf output: exit: 1 Exception: Unable to connect to Asterisk Manager from /var/lib/asterisk/bin/retrieve_conf, aborting in file /var/lib/asterisk/bin/retrieve_conf on line 11 Stack trace: 1. Exception->() /var/lib/asterisk/bin/retrieve_conf:11 Если вы столкнулись с данной проблемой, то при подключении к web-интерфейсу FreePBX, вы увидите ошибку Can Not Connect to Asterisk. Это значит, что amportal (fwconsole) ждёт от вас правильного пароля, который он берёт из БД. Чтобы решить данную проблему, необходимо ввести следующие команды: amportal a m mysql> UPDATE freepbx_settings SET value='amp111' WHERE keyword='AMPMGRPASS'; Если всё предыдущие шаги были выполнены верно, то вы увидите в консоли сообщение об успешной установке FreePBX: Теперь можно зайти на web-интерфейс FreePBX 13, для этого введите в адресную строку браузера адрес сервера Asterisk. Перед вами должно открыться окно создания администратора: Как можно заметить, на скриншоты выше у появилось предупреждение безопасности .htaccess files are disable on this webserver. Please enable them. Опасность оно представляет только если сервер будет смотреть в Интернет. Чтобы её убрать выполним следующие действия. Любым редактором открываем /etc/httpd/conf/httpd.conf, ищем строчку <Directory "/var/www/html"> и изменяем параметр AllowOverride c None на All После чего перезапускаем сервис service httpd restart На этом всё. Не забудьте обновить все модули :) Символы отображаются в виде знаков вопроса Если вы столкнулись с проблемой некорректного отображения кириллических символов, то внесите следующие строки в конфигурационный файл /etc/my.conf в разделе [mysqld]: character-set-server=utf8 collation-server=utf8_unicode_ci
img
Транспортный уровень OSI (уровень 4) определяет несколько функций, наиболее важными из которых являются восстановление после ошибок и управление потоком. Точно так же протоколы транспортного уровня TCP / IP также реализуют те же типы функций. Обратите внимание, что и модель OSI, и модель TCP / IP называют этот уровень транспортным. Но, как обычно, когда речь идет о модели TCP / IP, имя и номер уровня основаны на OSI, поэтому любые протоколы транспортного уровня TCP / IP считаются протоколами уровня 4. Ключевое различие между TCP и UDP заключается в том, что TCP предоставляет широкий спектр услуг приложениям, а UDP-нет. Например, маршрутизаторы отбрасывают пакеты по многим причинам, включая битовые ошибки, перегрузку и случаи, в которых не известны правильные маршруты. Известно, что большинство протоколов передачи данных замечают ошибки (процесс, называемый error detection), и затем отбрасывают кадры, которые имеют ошибки. TCP обеспечивает повторную передачу (error recovery) и помогает избежать перегрузки (управление потоком), в то время как UDP этого не делает. В результате многие прикладные протоколы предпочитают использовать TCP. Разница между TCP и UDP в одном видео Однако не думайте, что отсутствие служб у UDP делает UDP хуже TCP. Предоставляя меньше услуг, UDP требует меньше байтов в своем заголовке по сравнению с TCP, что приводит к меньшему количеству байтов служебных данных в сети. Программное обеспечение UDP не замедляет передачу данных в тех случаях, когда TCP может замедляться намеренно. Кроме того, некоторым приложениям, особенно сегодня, к передаче голоса по IP (VoIP) и видео по IP, не требуется восстановление после ошибок, поэтому они используют UDP. Итак, сегодня UDP также занимает важное место в сетях TCP / IP. В таблице 1 перечислены основные функции, поддерживаемые TCP/UDP. Обратите внимание, что только первый элемент, указанный в таблице, поддерживается UDP, тогда как TCP поддерживаются все элементы в таблице. Таблица № 1 Функции транспортного уровня TCP/IP Функции Описание Мультиплексирование с использованием портов Функция, которая позволяет принимающим хостам выбирать правильное приложение, для которого предназначены данные, на основе номера порта. Восстановление после ошибок (надежность) Процесс нумерации и подтверждения данных с помощью полей заголовка Sequence и Acknowledgment Управление потоком с использованием окон Процесс, использующий размеры окна для защиты буферного пространства и устройств маршрутизации от перегрузки трафиком. Установление и завершение соединения Процесс, используемый для инициализации номеров портов, а также полей Sequence и Acknowledgment. Упорядоченная передача данных и сегментация данных Непрерывный поток байтов от процесса верхнего уровня, который "сегментируется" для передачи и доставляется процессам верхнего уровня на принимающем устройстве с байтами в том же порядке Далее описываются возможности TCP, а затем приводится краткое сравнение с UDP. Transmission Control Protocol Каждое приложение TCP / IP обычно выбирает использование TCP или UDP в зависимости от требований приложения. Например, TCP обеспечивает восстановление после ошибок, но для этого он потребляет больше полосы пропускания и использует больше циклов обработки. UDP не выполняет исправление ошибок, но требует меньшей пропускной способности и меньшего количества циклов обработки. Независимо от того, какой из этих двух протоколов транспортного уровня TCP / IP приложение выберет для использования, вы должны понимать основы работы каждого из этих протоколов транспортного уровня. TCP, как определено в Request For Comments (RFC) 793, выполняет функции, перечисленные в таблице 1, через механизмы на конечных компьютерах. TCP полагается на IP для сквозной доставки данных, включая вопросы маршрутизации. Другими словами, TCP выполняет только часть функций, необходимых для доставки данных между приложениями. Кроме того, роль, которую он играет, направлена на предоставление услуг для приложений, установленных на конечных компьютерах. Независимо от того, находятся ли два компьютера в одном Ethernet или разделены всем Интернетом, TCP выполняет свои функции одинаково. На рисунке 1 показаны поля заголовка TCP. Хотя вам не нужно запоминать названия полей или их расположение, оставшаяся часть этой лекции относится к нескольким полям, поэтому весь заголовок включен сюда для справки. Сообщение, созданное TCP, которое начинается с заголовка TCP, за которым следуют данные приложения, называется сегментом TCP. В качестве альтернативы также может использоваться более общий термин PDU уровня 4 или L4PDU. Мультиплексирование с использованием номеров портов TCP И TCP, и UDP используют концепцию, называемую мультиплексированием. Поэтому этот подраздел начинается с объяснения мультиплексирования с TCP и UDP. После этого исследуются уникальные возможности TCP. Мультиплексирование по TCP и UDP включает в себя процесс того, как компьютер думает при получении данных. На компьютере может быть запущено множество приложений, таких как веб-браузер, электронная почта или приложение Internet VoIP (например, Skype). Мультиплексирование TCP и UDP сообщает принимающему компьютеру, какому приложению передать полученные данные. Определенные примеры помогут сделать очевидной необходимость мультиплексирования. Сеть из примера состоит из двух компьютеров, помеченных как Анна и Гриша. Анна использует написанное ею приложение для рассылки рекламных объявлений, которые появляются на экране Григория. Приложение отправляет Григорию новое объявление каждые 10 секунд. Анна использует второе приложение, чтобы отправить Грише деньги. Наконец, Анна использует веб-браузер для доступа к веб-серверу, который работает на компьютере Григория. Рекламное приложение и приложение для электронного перевода являются воображаемыми, только для этого примера. Веб-приложение работает так же, как и в реальной жизни. На рисунке 2 показан пример сети, в которой Гриша запускает три приложения: Рекламное приложение на основе UDP Приложение для банковских переводов на основе TCP Приложение веб-сервера TCP Грише необходимо знать, в какое приложение передавать данные, но все три пакета поступают из одного и того же Ethernet и IP-адреса. Вы могли подумать, что Григорий может посмотреть, содержит ли пакет заголовок UDP или TCP, но, как вы видите на рисунке, два приложения (wire transfer и web) используют TCP. TCP и UDP решают эту проблему, используя поле номера порта в заголовке TCP или UDP соответственно. Каждый из сегментов TCP и UDP Анны использует свой номер порта назначения, чтобы Григорий знал, какому приложению передать данные. На рисунке 3 показан пример. Мультиплексирование основывается на концепции, называемой сокетом. Сокет состоит из трех частей: IP-адрес Транспортный протокол Номер порта Итак, для приложения веб-сервера Григория, сокет будет (10.1.1.2, TCP, порт 80), потому что по умолчанию веб-серверы используют хорошо известный порт 80. Когда веб-браузер Анны подключается к веб-серверу, Анна также использует сокет - возможно, такой: (10.1.1.1, TCP, 49160). Почему 49160? Что ж, Анне просто нужен номер порта, уникальный для Анны, поэтому Анна видит этот порт 49160. Internet Assigned Numbers Authority (IANA), организация, которая управляет распределением IP-адресов во всем мире, и подразделяет диапазоны номеров портов на три основных диапазона. Первые два диапазона резервируют номера, которые IANA затем может назначить конкретным протоколам приложений через процесс приложения и проверки, а третья категория резервирует порты, которые будут динамически выделяться для клиентов, как в примере с портом 49160 в предыдущем абзаце. Имена и диапазоны номеров портов (более подробно описано в RFC 6335): Хорошо известные (системные) порты: номера от 0 до 1023, присвоенные IANA, с более строгим процессом проверки для назначения новых портов, чем пользовательские порты. Пользовательские (зарегистрированные) порты: номера от 1024 до 49151, присвоенные IANA с менее строгим процессом назначения новых портов по сравнению с хорошо известными портами. Эфемерные (динамические, частные) порты: номера от 49152 до 65535, не назначены и не предназначены для динамического выделения и временного использования для клиентского приложения во время его работы. На рисунке 4 показан пример, в котором используются три временных порта на пользовательском устройстве слева, а сервер справа использует два хорошо известных порта и один пользовательский порт. Компьютеры используют три приложения одновременно; следовательно, открыто три сокетных соединения. Поскольку сокет на одном компьютере должен быть уникальным, соединение между двумя сокетами должно идентифицировать уникальное соединение между двумя компьютерами. Эта уникальность означает, что вы можете использовать несколько приложений одновременно, разговаривая с приложениями, запущенными на одном или разных компьютерах. Мультиплексирование на основе сокетов гарантирует, что данные будут доставлены в нужные приложения. Номера портов являются важной частью концепции сокетов. Серверы используют хорошо известные порты (или пользовательские порты), тогда как клиенты используют динамические порты. Приложения, которые предоставляют услуги, такие как FTP, Telnet и веб-серверы, открывают сокет, используя известный порт, и прослушивают запросы на подключение. Поскольку эти запросы на подключение от клиентов должны включать номера портов источника и назначения, номера портов, используемые серверами, должны быть известны заранее. Таким образом, каждая служба использует определенный хорошо известный номер порта или номер пользовательского порта. Как общеизвестные, так и пользовательские порты перечислены на www.iana.org/assignments/servicenames-port-numbers/service-names-port-numbers.txt. На клиентских машинах, откуда исходят запросы, можно выделить любой локально неиспользуемый номер порта. В результате каждый клиент на одном и том же хосте использует другой номер порта, но сервер использует один и тот же номер порта для всех подключений. Например, 100 веб-браузеров на одном и том же хост-компьютере могут подключаться к веб-серверу, но веб-сервер со 100 подключенными к нему клиентами будет иметь только один сокет и, следовательно, только один номер порта (в данном случае порт 80). Сервер может определить, какие пакеты отправлены от какого из 100 клиентов, посмотрев на порт источника полученных сегментов TCP. Сервер может отправлять данные правильному веб-клиенту (браузеру), отправляя данные на тот же номер порта, который указан в качестве порта назначения. Комбинация сокетов источника и назначения позволяет всем участвующим хостам различать источник и назначение данных. Хотя в примере объясняется концепция использования 100 TCP-соединений, та же концепция нумерации портов применяется к сеансам UDP таким же образом. Почитайте продолжение цикла про популярные приложения TCP/IP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59