По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитайте предыдущую статью про безопасность передачи данных. Некоторые из самых ранних криптографических систем включали обертывание бумагой цилиндра определенного размера. Цилиндр должен был каким-то образом переноситься между двумя участниками зашифрованной связи, чтобы противник не захватил его. В более поздние годы блоки ключей физически переносились между двумя конечными точками зашифрованной системы. Некоторые из них были организованы таким образом, чтобы определенная страница использовалась в течение определенного периода времени, а затем вырывалась и уничтожалась, заменена новой страницей на следующий день. Другие были разработаны таким образом, чтобы каждая страница в блокноте использовалась для шифрования одного сообщения, после чего страница вырывалась и заменялась одноразовым блокнотом. Концепция одноразового блокнота была перенесена в современный мир с системами аутентификации, которые позволяют пользователю создавать код, который используется один раз, а затем отбрасывается, чтобы быть замененным новым кодом в следующий раз, когда пользователь попытается аутентифицироваться. Любая система, использующая код, который используется один раз, по-прежнему называется одноразовым блокнотом (one-time pad). В современном мире есть другие способы обмена криптографическим материалом, будь то использование общего секретного ключа или получение закрытого ключа. Во многих случаях в криптографии легче объяснить, как что-то работает, на тривиальных примерах. В следующих пояснениях Фаина и Дима будут двумя пользователями, которые пытаются обмениваться защищенной информацией, причем Фаина является инициатором и отправителем, а Дима - получателем. Обмен публичными ключами Фаина хотела бы отправить сообщение Диме таким образом, чтобы его мог прочитать только Дима. Для этого ей нужен открытый ключ Димы (помните, что у нее не должно быть доступа к закрытому ключу Димы). Где она может получить эту информацию? Она могла: Спросить об этом у Димы напрямую. Это может показаться простым, но в реальной жизни это может быть очень сложно. Как, например, она может быть уверена, что действительно общается с Димой? Найти открытый ключ Димы в открытой базе данных ключей (на сервере ключей). Опять же, это кажется простым, но как она узнает, что нашла нужный ключ или кто-то не разместил ложный ключ для Димы на этом конкретном сервере? Эти две проблемы можно решить с помощью какой-то системы репутации. Например, в случае открытого ключа Дима может попросить нескольких своих друзей, которые хорошо его знают, подписать его открытый ключ, используя свои закрытые ключи. Их подпись на его открытом ключе, по сути, гласит: "Я знаю Дмитрия, и я знаю, что это его открытый ключ". Фаина может изучить этот список друзей, чтобы определить, кому из них она может доверять. Основываясь на этом исследовании, Фаина может определить, что она либо верит, что этот конкретный ключ является ключом Димы, либо нет. В этой ситуации Фаина сама решает, сколько и какого рода доказательств она примет. Должна ли она, например, признать, что ключ, который у нее есть, на самом деле принадлежит Диме, потому что: Она напрямую знает одного из друзей Димы и верит, что этот третий человек скажет ей правду. Она знает кого-то, кто знает одного из друзей Димы, и доверяет своему другу, чтобы он рассказал ей правду о друге Димы, и, следовательно, доверяет другу Димы рассказать правду о Диме и его ключе. Она знает нескольких человек, которые знают нескольких друзей Димы, и принимает решение доверять этому ключу Димы, основываясь на свидетельствах нескольких человек. Такая система называется паутиной доверия. Общая идея заключается в том, что доверие имеет разные уровни транзитивности. Концепция транзитивного доверия несколько противоречива, но идея, лежащая в основе сети доверия, заключается в том, что, если вы получаете достаточно доказательств, вы можете создать доверие в паре человек/ключ. Примером такого рода паутины доверия является система Pretty Good Privacy, где люди встречаются на конференциях, чтобы перекрестно подписывать ключи друг друга, создавая паутину транзитивных доверительных отношений, на которые можно положиться, когда их общение переходит в сферу только электронных. Другой вариант - владелец сервера ключей может каким-то образом провести расследование в отношении Дмитрия и определить, действительно ли он тот, кем он себя выдает, и действительно ли это его ключ. Самый яркий пример такого решения в "реальном мире" - это нотариус. Если вы подписываете документ перед нотариусом, он проверяет наличие какой-либо формы удостоверения личности (подтверждающей, кто вы), а затем наблюдает, как вы физически подписываете документ (проверяя ваш ключ). Этот вид проверки называется центральным источником доверия (или аналогичным - хотя в нем почти всегда есть слово "централизованный") или инфраструктурой открытого ключа (Public Key Infrastructure -PKI). Решение зависит от доверия Фаины процессу и честности централизованного хранилища ключей. Обмен закрытыми ключами Учитывая, что криптография с симметричным ключом обрабатывается намного быстрее, чем криптография с открытым ключом, в идеале вы хотели бы зашифровать любые давно существующие или большие потоки с использованием симметричного общего секретного ключа. Но, если не считать физического обмена ключами, как можно обмениваться одним закрытым ключом между двумя устройствами, подключенными по сети? Рисунок 1 демонстрирует это. На рисунке выше: Предположим, А начинает процесс. A зашифрует одноразовый номер, случайное число, которое используется один раз в процессе, а затем выбрасывается (по сути, одноразовый номер представляет собой форму одноразового блокнота), используя открытый ключ B. Поскольку одноразовый номер был зашифрован с помощью открытого ключа B, теоретически только B может расшифровать одноразовый номер, поскольку только B должен знать закрытый ключ B. B, после расшифровки одноразового номера, теперь отправит новый одноразовый номер в A. Он может включать исходный одноразовый номер A или исходный одноразовый номер A плюс некоторая другая информация. Дело в том, что A должен точно знать, что исходное сообщение, включая одноразовый номер A, было получено B, а не какой-либо другой системой, действующей как B. Это обеспечивается B, включая некоторую часть информации, которая была зашифрована с использованием его открытого ключа, поскольку B - единственная система, которая могла его расшифровать. A и B, используя одноразовые номера и другую информацию, обмениваемую до этого момента, вычисляют закрытый ключ, который затем используется для шифрования / расшифровки информации, передаваемой между двумя системами. Описанные здесь шаги несколько наивны. Есть лучшие и более безопасные системы, такие как протокол Internet Key Exchange (IKE).
img
Данная статья будет посвящена одному из основных протоколов IP телефонии – SIP (Session Initiation Protocol - протокол установления сеанса), разработанный одним из отделений IETF - MMUSIC (Multiparty Multimedia Session Control). Описывается в спецификации RFC 2543 и RFC 3261. SIP – это протокол прикладного уровня модели OSI, описывающий способы и правила установления интернет-сессий для обмена мультимедийной информацией, такой как: звук, голос, видеоряд, графика и др. Для соединения обычно используется порт 5060 или 5061. В качестве транспортных протоколов SIP поддерживает: UDP, TCP, SCTP, TLS . Протокол SIP широко применяется в офисной IP-телефонии, видео и аудио-конференциях, он-лайн играх и др. Элементы Протокол SIP имеет клиент-серверную модель. Основными функциональными элементами являются: Абонентский терминал. Устройство, с помощью которого абонент управляет установлением и завершением звонков. Может быть реализован как аппаратно (SIP-телефон), так и программно (Софтфон). Прокси-сервер. Устройство, которое принимает и обрабатывает запросы от терминалов, выполняя соответствующие этим запросам действия. Прокси-сервер состоит из клиентской и серверной частей, поэтому может принимать вызовы, инициировать запросы и возвращать ответы. Сервер переадресации. Устройство, хранящее записи о текущем местоположении всех имеющихся в сети терминалах и прокси-серверах. Сервер переадресации не управляет вызовами и не генерирует собственные запросы. Сервер определения местоположения пользователей. Представляет собой базу данных адресной информации. Необходим для обеспечения персональной мобильности пользователей. Важные преимущества Так как группа MMUSIC разрабатывала протокол SIP с учётом недостатков предшествующего ему H.323, то SIP обзавелся следующими достоинствами: Простота Так как SIP унаследовал текстовый формат сообщений от HTTP, то в случае если одному терминалу при установлении соединения неизвестна какая-либо возможность, известная другому, то данный факт попросту игнорируется. Если же такая ситуация возникнет с протоколом H.323, то это приведет к сбою соединения, т.к H.323 имеет бинарный формат сообщений и все возможности протокола описаны в соответствующей документации. Масштабируемость В случае расширения сети, при использовании протокола SIP , существует возможность добавления дополнительного числа пользователей. Мобильность Благодаря гибкой архитектуре протокола SIP, пропадает необходимость заново регистрировать пользователей, в случае смены ими своего местоположения. Расширяемость При появлении новый услуг существует возможность дополнят протокол SIP новыми функциями. Взаимодействие с другими протоколами сигнализации Имеется возможность использования протокола SIP с протоколами сигнализации сетей ТфОП, такими как DSS-1 и ОКС7. Типы запросов Для организации простейшего вызова в протоколе SIP, предусмотрено 6 типов информационных запросов: INVITE — Инициирует вызов от одного терминала к другому. Содержит описание поддерживаемых сервисов (которые могут быть использованы инициатором сеанса), а также виды сервисов, которые желает передавать инициатор; ACK —Подтверждение установления соединения адресатом. Содержит окончательные параметры сеанса связи, выбранные для установления сеанса связи; Cancel — Отмена ранее переданных неактуальных запросов; BYE — Запрос на завершение соединения; Register — Идентификация местоположения пользователя; OPTIONS — Запрос на информацию о функциональных возможностях терминала, обычно посылается до фактического начала обмена сообщениями INVITE, ACK; SIP - ответы Определено 6 типов ответов, которым прокси-сервер описывает состояние соединения, например: подтверждение установления соединения, передача запрошенной информации, сведения о неисправностях др. 1хх — Информационные ответы; Информационные ответы сообщают о ходе выполнения запроса и не являются его завершением. Остальные же классы ответов завершают выполнение запроса. 2хх — Успешное окончание запроса; 3хх — Информация об изменения местоположения вызываемого абонента; 4хх — Информация об ошибке; 5хх — Информация об ошибке на сервере; 6хх — Информация о невозможности вызова абонента (пользователь с таким адресом не зарегистрирован, или пользователь занят). В следующей статье мы рассмотрим основные сценарии установления соединения по протоколу SIP, а также его модификации и дополнительные функции.
img
Телефонная станция Cisco Call Manager Express (CME) – это телефонная станция, которая функционирует на базе маршрутизатора ISR (Integrated Service Router). Цифровая IP АТС CME разработана для малого и среднего бизнеса, а также, для удаленных филиалов и представительств крупных компаний. Функционал и количество поддерживаемых телефонных аппаратов зависит от платформы, поверх которой функционирует Call Manager Express. Телефонный функционал изначально зашит в IOS (Internetwork Operation System) маршрутизатора, поэтому, для его работы необходима лишь активация. Цифровая IP – АТС Cisco Call Manager Express работает с интерфейсами E1, FXO и FXS. Поддерживает сигнализацию на базе протокола SIP и SCCP, функционал видеоконференцсвязи, интеграцию с голосовой почтой и многие другие опции. Т.к Cisco Call Manager Express базируется поверх граничного ISR маршрутизатора, то он имеет уникальную возможность выступать как устройство модели «все в одном». Это означает одновременную передачу данных, контроля над Cisco IP – телефонами, транки в телефонную сеть общего пользования (ТфОП) и различные приложения. Отметим следующие ключевые особенности CME: Обслуживание вызова: CME это устройство «все в одном». Он поддерживает маршрутизацию трафика, работу с телефонной сигнализацией и оконечными устройствами; Локальная библиотека пользователей: CME хранит данные о пользователях сети, данных авторизации, например, PIN коды пользователей; Возможность управления через командную строку и графический интерфейс: Функционал IP АТС зашит напрямую в операционную систему маршрутизатора IOS. Поэтому, в специальном режиме, можно пользоваться командной строкой, выводить различные данные и так далее. У компании Cisco Systems также есть гибкая и удобная в настройке утилита Cisco Configuration Professional (CCP). Она позволяет производить настройки через удобный графический интерфейс пользователя (GUI) ; Поддержка Computer Telephony Integration (CTI): Интерфейс CTI позволяет интегрировать телефонную станцию с другими приложениями корпоративной сети. Например, подобная интеграция позволяет делать звонки напрямую из почтового клиента Microsoft Outlook; Возможность настройки транков к прочим VoIP системам: CME может выступать как одиночное решение, напрямую подключаемое к ТфОП. Помимо этого, имеется возможность подключаться поверх сети передачи данных к центральной площадке, на примере данной дипломной работы, к кластеру серверов Cisco Unified Communications Manager поверх сети передачи данных; Интеграция с дополнительными услугами: В CME имеется возможность встраивания модуля Cisco Unity Express (CUE), который позволит использовать голосовую почту в корпоративном контуре. Cisco Call Maganer Express особенно удобен для подключения удаленных офисов к существующей системе корпоративной связи на базе Cisco На рисунке приведена схема работы Cisco Call Manager и стрелками обозначены направления работы протоколов сигнализации, при установлении соединения через ТфОП. На данном примере, пользователь Cisco IP – телефона снимает трубку и начинает набирать номер абонента, находящегося в ТфОП. На данном этапе передача цифр номера и управление вызовом обеспечивается протоколам SIP или SCCP, в зависимости от настройки оконечного устройства. Как только абонент набирает номер, телефонная станция CME, опираясь на заранее настроенный план нумерации, определяет, что вызов находится за пределами корпоративной сети (за граничным шлюзом) и его необходимо отправить в ТфОП. С этого момента, CME выступает в роли голосового шлюза и преобразует сигнализацию из формата SIP или SCCP в формат понятный E1 или FXO транку. Как только вызов установлен, Cisco Call Manager Express начинает преобразовывать аудио из формата VoIP в формат Public Switched Telephone Network (PSTN) или как принято говорить в РФ – ТфОП. Поскольку процесс преобразования аудио – трафика достаточно сложен и несет в себе большую аппаратную нагрузку, в Call Manager Express оборудован дополнительный процессор Digital Signal Processors (DSP), специально предназначенный для преобразования голосового трафика. Важно отметить, что при проектировании корпоративной телефонной сети, учитывается проектируемая нагрузка и соответственно, специально подбираются ресурсы DSP. При объединении площадок, настраивается Site to Site VPN – туннель, в котором трафик площадок передается в зашифрованном виде. В функционал CME можно легко внедрить голосовое меню на базе VXML скрипта, который будет являться конфигурацией. Другими словами, VXML будет отдавать команды маршрутизатору на определенные действия, будь то перевод звонка на определенный номер или воспроизведение звукового файла. Реализация VXML голосового меню происходит на граничном маршрутизаторе. При объединении офисов, настраивается “Dial Peer” – команда действий телефонной станции при наборе определенного номера. План нумерации определяется с учетом потребностей площадок, масштабируемости и удобства ведения бизнеса.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59