По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитайте предыдущую статью из цикла про установление и прекращение соединения в TCP. UDP предоставляет приложениям сервис для обмена сообщениями. В отличие от TCP, UDP не требует установления соединения и не обеспечивает надежности, работы с окнами, переупорядочивания полученных данных и сегментации больших фрагментов данных на нужный размер для передачи. Однако UDP предоставляет некоторые функции TCP, такие как передача данных и мультиплексирование с использованием номеров портов, и делает это с меньшим объемом служебных данных и меньшими затратами на обработку, чем TCP. Передача данных UDP отличается от передачи данных TCP тем, что не выполняется переупорядочевание или восстановление. Приложения, использующие UDP, толерантны к потерянным данным, или у них есть какой-то прикладной механизм для восстановления потерянных данных. Например, VoIP использует UDP, потому что, если голосовой пакет потерян, к тому времени, когда потеря может быть замечена и пакет будет повторно передан, произойдет слишком большая задержка, и голос будет неразборчивым. Кроме того, запросы DNS используют UDP, потому что пользователь будет повторять операцию, если разрешение DNS не удается. В качестве другого примера, сетевая файловая система (NFS), приложение удаленной файловой системы, выполняет восстановление с помощью кода уровня приложения, поэтому функции UDP приемлемы для NFS. На рисунке 10 показан формат заголовка UDP. Самое главное, обратите внимание, что заголовок включает поля порта источника и назначения для той же цели, что и TCP. Однако UDP имеет только 8 байтов по сравнению с 20-байтовым заголовком TCP, показанным на рисунке 1-1. UDP требует более короткого заголовка, чем TCP, просто потому, что у UDP меньше работы. Приложения TCP / IP Вся цель построения корпоративной сети или подключения небольшой домашней или офисной сети к Интернету состоит в использовании таких приложений, как просмотр веб-страниц, обмен текстовыми сообщениями, электронная почта, загрузка файлов, голос и видео. В этом подразделе исследуется одно конкретное приложение - просмотр веб-страниц с использованием протокола передачи гипертекста (HTTP). Всемирная паутина (WWW) состоит из всех подключенных к Интернету веб-серверов в мире, а также всех подключенных к Интернету хостов с веб-браузерами. Веб-серверы, которые состоят из программного обеспечения веб-сервера, запущенного на компьютере, хранят информацию (в виде веб-страниц), которая может быть полезна для разных людей. Веб-браузер, представляющий собой программное обеспечение, установленное на компьютере конечного пользователя, предоставляет средства для подключения к веб-серверу и отображения веб-страниц, хранящихся на веб-сервере. Хотя большинство людей используют термин "веб-браузер" или просто "браузер", веб-браузеры также называются веб-клиентами, потому что они получают услугу с веб-сервера. Чтобы этот процесс работал, необходимо выполнить несколько определенных функций прикладного уровня. Пользователь должен каким-то образом идентифицировать сервер, конкретную веб-страницу и протокол, используемый для получения данных с сервера. Клиент должен найти IP-адрес сервера на основе имени сервера, обычно используя DNS. Клиент должен запросить веб-страницу, которая на самом деле состоит из нескольких отдельных файлов, а сервер должен отправить файлы в веб-браузер. Наконец, для приложений электронной коммерции (электронной коммерции) передача данных, особенно конфиденциальных финансовых данных, должна быть безопасной. В следующих подразделах рассматривается каждая из этих функций. Унифицированные идентификаторы ресурсов Чтобы браузер отображал веб-страницу, он должен идентифицировать сервер, на котором находится эта веб-страница, а также другую информацию, которая идентифицирует конкретную веб-страницу. Большинство веб-серверов имеют множество веб-страниц. Например, если вы используете веб-браузер для просмотра www.cisco.com и щелкаете по этой веб-странице, вы увидите другую веб-страницу. Щелкните еще раз, и вы увидите другую веб-страницу. В каждом случае щелчок идентифицирует IP-адрес сервера, а также конкретную веб-страницу, при этом детали в основном скрыты от вас. (Эти интерактивные элементы на веб-странице, которые, в свою очередь, переводят вас на другую веб-страницу, называются ссылками.) Пользователь браузера может идентифицировать веб-страницу, когда вы щелкаете что-либо на веб-странице или когда вы вводите унифицированный идентификатор ресурса (URI) в адресную область браузера. Оба варианта - щелчок по ссылке и ввод URI - относятся к URI, потому что, когда вы щелкаете ссылку на веб-странице, эта ссылка фактически ссылается на URI. Большинство браузеров поддерживают какой-либо способ просмотра скрытого URI, на который ссылается ссылка. В некоторых браузерах наведите указатель мыши на ссылку, щелкните правой кнопкой мыши и выберите "Свойства". Во всплывающем окне должен отображаться URI, на который будет направлен браузер, если вы нажмете эту ссылку. В просторечии многие люди используют термины веб-адрес или аналогичные связанные термины Universal Resource Locator (или Uniform Resource Locator [URL]) вместо URI, но URI действительно является правильным формальным термином. Фактически, URL-адрес используется чаще, чем URI, уже много лет. Однако IETF (группа, определяющая TCP / IP) вместе с консорциумом W3C (W3.org, консорциум, разрабатывающий веб-стандарты) предприняли согласованные усилия по стандартизации использования URI в качестве общего термина. С практической точки зрения, URI, используемые для подключения к веб-серверу, включают три ключевых компонента, как показано на рисунке 11. На рисунке показаны формальные имена полей URI. Что еще более важно для понимания, обратите внимание, что текст перед :// определяет протокол, используемый для подключения к серверу, текст между // и / идентифицирует сервер по имени, а текст после / идентифицирует веб-страницу. В этом случае используется протокол передачи гипертекста (HTTP), имя хоста - www.certskills.com, а имя веб-страницы - blog. Поиск веб-сервера с помощью DNS Хост может использовать DNS для обнаружения IP-адреса, соответствующего определенному имени хоста. В URI обычно указывается имя сервера - имя, которое можно использовать для динамического изучения IP-адреса, используемого этим же сервером. Веб-браузер не может отправить IP-пакет на имя назначения, но он может отправить пакет на IP-адрес назначения. Итак, прежде чем браузер сможет отправить пакет на веб-сервер, браузеру обычно необходимо преобразовать имя внутри URI в соответствующий IP-адрес этого имени. Чтобы собрать воедино несколько концепций, на рисунке 12 показан процесс DNS, инициированный веб-браузером, а также некоторая другая связанная информация. С базовой точки зрения пользователь вводит URI (в данном случае http://www.exempel.com/go/learningnetwork), преобразует имя www.exempel.com в правильный IP-адрес и начинает отправлять пакеты на веб сервер. Шаги, показанные на рисунке, следующие: Пользователь вводит URI http://www.exempel.com/go/learningnetwork в адресную область браузера. Клиент отправляет DNS-запрос на DNS-сервер. Обычно клиент узнает IP-адрес DNS-сервера через DHCP. Обратите внимание, что запрос DNS использует заголовок UDP с портом назначения 53-го известного порта DNS (см. таблицу 2 ранее в этой лекции, где приведен список популярных хорошо известных портов). DNS-сервер отправляет ответ, в котором IP-адрес 198.133.219.25 указан как IP-адрес www.exemple.com. Также обратите внимание, что ответ показывает IP-адрес назначения 64.100.1.1, IP-адрес клиента. Он также показывает заголовок UDP с портом источника 53; исходный порт - 53, потому что данные получены или отправлены DNS-сервером. Клиент начинает процесс установления нового TCP-соединения с веб-сервером. Обратите внимание, что IP-адрес назначения - это только что изученный IP-адрес веб-сервера. Пакет включает заголовок TCP, потому что HTTP использует TCP. Также обратите внимание, что TCP-порт назначения - 80, хорошо известный порт для HTTP. Наконец, отображается бит SYN, как напоминание о том, что процесс установления TCP-соединения начинается с сегмента TCP с включенным битом SYN (двоичная 1). Пример на рисунке 12 показывает, что происходит, когда клиентский хост не знает IP-адрес, связанный с именем хоста, но предприятие знает адрес. Однако хосты могут кэшировать результаты DNS-запросов, так что какое-то время клиенту не нужно запрашивать DNS для разрешения имени. Также DNS-сервер может кэшировать результаты предыдущих DNS-запросов; например, корпоративный DNS-сервер на рисунке 12 обычно не имеет настроенной информации об именах хостов в доменах за пределами этого предприятия, поэтому в этом примере DNS-сервер кэшировал адрес, связанный с именем хоста www.example.com. Когда локальный DNS не знает адрес, связанный с именем хоста, ему необходимо обратиться за помощью. На рисунке 13 показан пример с тем же клиентом, что и на рисунке 12. В этом случае корпоративный DNS действует как рекурсивный DNS-сервер, отправляя повторяющиеся DNS-сообщения, чтобы идентифицировать авторитетный DNS-сервер. Шаги, показанные на рисунке, следующие: Клиент отправляет DNS-запрос для www.exemple.com на известный ему DNS-сервер, который является корпоративным DNS-сервером. (Рекурсивный) корпоративный DNS-сервер еще не знает ответа, но он не отклоняет DNS-запрос клиента. Вместо этого он следует повторяющемуся (рекурсивному) процессу (показанному как шаги 2, 3 и 4), начиная с DNS-запроса, отправленного на корневой DNS-сервер. Корень также не предоставляет адрес, но он предоставляет IP-адрес другого DNS-сервера, ответственного за домен верхнего уровня .com. Рекурсивный корпоративный DNS-сервер отправляет следующий DNS-запрос DNS-серверу, полученному на предыдущем шаге, - на этот раз DNS-серверу TLD для домена .com. Этот DNS также не знает адреса, но знает DNS-сервер, который должен быть официальным DNS-сервером для домена exemple.com, поэтому он предоставляет адрес этого DNS-сервера. Корпоративный DNS отправляет другой DNS-запрос DNS-серверу, адрес которого был получен на предыдущем шаге, снова запрашивая разрешение имени www.exeple.com. Этот DNS-сервер, официальный сервер exemple.com, предоставляет адрес. Корпоративный DNS-сервер возвращает DNS-ответ клиенту, предоставляя IP-адрес, запрошенный на шаге 1. Передача файлов по HTTP После того, как веб-клиент (браузер) создал TCP-соединение с веб-сервером, клиент может начать запрашивать веб-страницу с сервера. Чаще всего для передачи веб-страницы используется протокол HTTP. Протокол прикладного уровня HTTP, определенный в RFC 7230, определяет, как файлы могут передаваться между двумя компьютерами. HTTP был специально создан для передачи файлов между веб-серверами и веб-клиентами. HTTP определяет несколько команд и ответов, из которых наиболее часто используется запрос HTTP GET. Чтобы получить файл с веб-сервера, клиент отправляет на сервер HTTP-запрос GET с указанием имени файла. Если сервер решает отправить файл, он отправляет ответ HTTP GET с кодом возврата 200 (что означает ОК) вместе с содержимым файла. Для HTTP-запросов существует множество кодов возврата. Например, если на сервере нет запрошенного файла, он выдает код возврата 404, что означает "файл не найден". Большинство веб-браузеров не показывают конкретные числовые коды возврата HTTP, вместо этого отображая ответ, такой как "страница не найдена", в ответ на получение кода возврата 404. Веб-страницы обычно состоят из нескольких файлов, называемых объектами. Большинство веб-страниц содержат текст, а также несколько графических изображений, анимированную рекламу и, возможно, видео и звук. Каждый из этих компонентов хранится как отдельный объект (файл) на веб-сервере. Чтобы получить их все, веб-браузер получает первый файл. Этот файл может (и обычно делает) включать ссылки на другие URI, поэтому браузер затем также запрашивает другие объекты. На рисунке 14 показана общая идея, когда браузер получает первый файл, а затем два других. В этом случае, после того, как веб-браузер получает первый файл - тот, который в URI называется "/go/ccna", браузер читает и интерпретирует этот файл. Помимо частей веб-страницы, файл ссылается на два других файла, поэтому браузер выдает два дополнительных запроса HTTP GET. Обратите внимание, что, даже если это не показано на рисунке, все эти команды проходят через одно (или, возможно, несколько) TCP-соединение между клиентом и сервером. Это означает, что TCP обеспечит исправление ошибок, гарантируя доставку данных. Как принимающий хост определяет правильное принимающее приложение Эта лекция завершается обсуждением процесса, с помощью которого хост при получении любого сообщения по любой сети может решить, какая из множества своих прикладных программ должна обрабатывать полученные данные. В качестве примера рассмотрим хост A, показанный слева на рисунке 15. На хосте открыто три разных окна веб-браузера, каждое из которых использует уникальный TCP-порт. На хосте A также открыт почтовый клиент и окно чата, оба из которых используют TCP. И электронная почта, и чат-приложения используют уникальный номер TCP-порта на хосте A, как показано на рисунке. В этой части лекции показано несколько примеров того, как протоколы транспортного уровня используют поле номера порта назначения в заголовке TCP или UDP для идентификации принимающего приложения. Например, если значение TCP-порта назначения на рисунке 15 равно 49124, хост A будет знать, что данные предназначены для первого из трех окон веб-браузера. Прежде чем принимающий хост сможет проверить заголовок TCP или UDP и найти поле порта назначения, он должен сначала обработать внешние заголовки в сообщении. Если входящее сообщение представляет собой кадр Ethernet, который инкапсулирует пакет IPv4, заголовки выглядят так, как показано на рисунке 16. Принимающему узлу необходимо просмотреть несколько полей, по одному на заголовок, чтобы идентифицировать следующий заголовок или поле в полученном сообщении. Например, хост A использует сетевой адаптер Ethernet для подключения к сети, поэтому полученное сообщение представляет собой кадр Ethernet. Поле типа Ethernet определяет тип заголовка, который следует за заголовком Ethernet - в данном случае со значением шестнадцатеричного значения 0800, заголовком IPv4. Заголовок IPv4 имеет аналогичное поле, называемое полем протокола IP. Поле протокола IPv4 имеет стандартный список значений, которые идентифицируют следующий заголовок, с десятичным числом 6, используемым для TCP, и десятичным числом 17, используемым для UDP. В этом случае значение 6 определяет заголовок TCP, следующий за заголовком IPv4. Как только принимающий хост понимает, что заголовок TCP существует, он может обработать поле порта назначения, чтобы определить, какой процесс локального приложения должен получить данные. Теперь вас ждет материал про списки управления доступом IPv4
img
Привет, дорогой друг! На днях на AstriCon 2018 в Орландо, компания Sangoma (которая разрабатывает FreePBX) и компания Digium (которая разрабатывает Asterisk), которую, кстати, ранее приобрела компания Sangoma, сделали совместное заявление, в котором сообщили о выходе мажорных версий своих продуктов - Asterisk 16 и FreePBX 15. Теперь они – Sang*ma Asterisk 16 действительно доступен на сайте разработчика, а вот если Вы хотите попробовать FreePBX 15, то в привычном месте, где лежат актуальные версии Distro, Вы его не найдёте. Почему так получилось и как всё-таки попробовать 15 версию FreePBX – мы сейчас расскажем! Дело в том, что FreePBX 15 c 29.08.18 находится в стадии альфа-тестирования. Это когда продукт отлаживают квалифицированные специалисты, которые обладают соответствующими навыками и знанием методик в области тестирования. После этапа альфа-тестирования, наступает этап бэта-тестирования, когда продукт почти готов для конечных пользователей. Обычно, такую версию делают доступной для всех желающих, чтобы простые пользователи могли дать фидбэк по доработкам. После этого идёт этап RC (Release Candidate), это такой период, когда продукт считается готовым к финальному релизу, только если за это время не будет найден какой-нибудь серьёзный баг. И, наконец – финальная версия, полностью отлаженная и готовая к массовому использованию. Однако, это альфа-тестирование абсолютно открытое и каждый желающий может принять в нём участие. Важно понимать, что на данном этапе продукт ещё полон багов и недоработок, поэтому его ни в коем случае нельзя использовать для продакшен систем!. Итак, чтобы «попробовать» FreePBX 15, нужно найти на форуме пост от разработчика FreePBX Andrew Nagy от 29.08.18 – вот он и следовать описанным в нём инструкциям. Суть заключается в том, что необходимо вручную скачать модуль для FreePBX, который позволит нам обновиться до 15 версии. Перед началом данного процесса, у нас установлен FreePBX 14 из Distro SNG7-PBX-64bit-1805-1. Внимание! Не повторяйте данный метод на инсталляциях, которые используются в продакшне! В настоящий момент FreePBX 15 ещё не готов для боевой эксплуатации! Создайте отдельный тестовый сервер, прежде чем продолжать. Откройте вэб-интерфейс FreePBX Admin → Module Admin Выберите в поле Type опцию Download (From Web) и вставьте следующую ссылку http://mirror1.freepbx.org/modules/packages/versionupgrade/versionupgrade-14.0.1.1.tgz в поле Download Remote Module Нажмите Download (From Web) Вернитесь к списку модулей, нажав Manage local modules В пункте Admin найдите и настройте модуль PBX Upgrader. В поле Action выберите опцию Install, затем нажмите кнопку Process в самом низу В открывшейся вкладке подтвердите установку кнопкой Confirm По завершению установки во вкладке Admin появится новый модуль 14 to 15 Upgrade Tool, зайдите в него В открывшемся окне нажмите Check the Requirements Убедитесь, что система соответствует всем требованиям перед обновлением. У нас не соответствует, нам необходимо: Зарегистрировать и активировать систему Обновить локальные модули Обновить коммерческие модули О том, как обновлять модули, читайте в нашей статье Когда все требования выполнены, снова откройте 14 to 15 Upgrade Tool там должна появиться кнопка Proceed to upgrade process В открывшемся окне выберите свой дистрибутив На втором шаге у нас возникла ошибка, нам предложили ввести команду amportal && fwconsole ma upgradeall через CLI. Вводите именно команду fwconsole ma upgradeall, amportal он не поймёт. После того, как мы ввели команду fwconsole ma upgradeall, мы ещё раз запустили Proceed to upgrade process и обновление продолжилось. Дождитесь завершения установки и нажмите клавишу Refresh Поздравляем, Вы успешно установили АЛЬФА версию FreePBX 15, Вы – удивительны! Ещё раз напоминаем, что данную версию ни в коем случае нельзя использовать в качестве боевой АТС, а вот тестировать и делиться фидбэками – Welcome!
img
По умолчанию, в Windows Server 2019 брандмауэр настроен на блокировку входящего трафика ICMP. Сюда входят эхо-запросы, которые используются командой ping, и это может затруднить устранение неполадок в сети. Некоторые системы мониторинга используют команду ping для отслеживания доступности серверов. В этом руководстве рассмотрим, как включить правило, чтобы сервер стал отвечать на ping используя графический интерфейс Windows Server 2019, а также включим разрешающее правило через PowerShell и netsh. Обычно просто отключают Windows Firewall полностью, однако это не рекомендуется делать в производственной среде, так как брандмауэр Windows хорошо справляется с обеспечением базового уровня защиты системы. Разрешим только конкретное правило, необходимое для успешного выполнения команды ping. Разрешить проверку связи через брандмауэр Windows Сначала нам нужно открыть брандмауэр Windows, это можно сделать несколькими способами. Один из методов - просто нажать клавишу Windows, чтобы открыть меню "Start", а затем начать вводить слово Firewall. Как показано ниже, брандмауэр Windows с расширенной безопасностью должен отображаться, выберите этот пункт. Еще один быстрый способ: в PowerShell можно просто ввести "firewall" и нажать Enter. Откроется базовый интерфейс брандмауэра, а затем нажать кнопку "Advanced settings" в левой части. Откроется тот же интерфейс, что и через меню "Start". Следующий способ открыть Firewall - ввести в CMD такой текст: "firewall.cpl" В Брандмауэре в расширенном режиме перейдите в Inboud Rules (Правила для входящих подключений). В перечне правил в Inboud Rules, найдите "File and Printer Sharing (Echo Request - ICMPv4-In)" и активируйте его. Еще один вариант. Активируем разрешающее правило командлетом Powershell Set-NetFirewallRule -DisplayName "File and Printer Sharing (Echo Request - ICMPv4-In)" -enabled True Полную справку со всеми параметрами можно получить, набрав команду в PowerShell help New-NetFirewallRule Вариант создания правила через netsh netsh advfirewall firewall add rule name="ICMP Allow incoming V4 echo request" protocol=icmpv4:8,any dir=in action=allow Примечание: Включение правила позволит получать ответы только на IPv4 запросы, если нужно получать ответы по IPv6, нужно разблокировать правило такое же правило, только с Echo Request - ICMPv6-In, перечисленное ниже. К тому же имеется несколько профилей: доменный, публичный, частный. Ненужные профили можно отключить в правиле, во вкладке Advanced. После разблокировки правила сервер должен начать отвечать на запросы ping. С хоста виртуализации или другого пк в локальной сети протестируем ping'ом Windows Server 2019 по адресу 192.168.1.11 перед включением правила, а затем снова после его включения. Ниже видно, что время ожидания первых запросов истекло, так как входящие запросы ICMP были отключены по умолчанию в Windows Server 2019. После включения правила ICMP запросы ping успешно выполняются, что подтверждает ожидаемую работу. Пример проверки связи: Скачать видео. Резюме Стандартное правило брандмауэра - блокировать ICMP запросы, в итоге сервер не отвечает на ping. Включив это правило брандмауэра, мы включили команду ping в Windows Server 2019, которая поможет нам устранить неполадки в сети.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59