По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Порой, например, при подключении аналогового телефона через FXS шлюз, на котором отсутствует регулировка громкости, необходимо отрегулировать громкость при разговоре. Предположим, что на FXS шлюзе отсутствует регулировка на порту, к которому подключен телефон. Давайте разберемся: Данная регулировка реализуется на базе VOLUME(TX|RX). Информацию по ней можно посмотреть через консоль Asterisk: asterisk*CLI> core show function VOLUME -= Info about function 'VOLUME' =- [Synopsis] Set the TX or RX volume of a channel. \ можно настроить громкость для канала [Description] The VOLUME function can be used to increase or decrease the 'tx' or 'rx' gain of any channel. For example: Set(VOLUME(TX)=3) Set(VOLUME(RX)=2) Set(VOLUME(TX,p)=3) Set(VOLUME(RX,p)=3) [Syntax] VOLUME(direction[,options]) [Arguments] direction Must be 'TX' or 'RX'. options p: Enable DTMF volume control [See Also] Not available Данная функция имеет 2 параметра: Направление, т.е TX – отправка, RX – прием. Дополнительная опция p, которая активирует контроль над звуком по DTMF На данном этапе мы разобрались с функцией VOLUME. Теперь открываем файл extensions_customs.conf и производим следующие настройки нового контекста: [root@asterisk ~]# vim /etc/asterisk/extensions_custom.conf [volume-set] exten => _X.,1,NoOp(Volume settings) same => n,Set(VOLUME(TX)=5) same => n,Set(VOLUME(RX)=5) same => n,Goto(from-internal,${EXTEN},1) Теперь открываем необходимый нам Extension, и в поле Context, вносим название созданного нами выше контекста - volume-set. Теперь можно регулировать громкость в настройках контекста, изменяя значение с 5 на другое, параллельно проверяя громкость в трубке
img
Frontend-разработчики — ключевая IT-профессия: фронтендеры отвечают за создание интерфейсов сайтов и приложений, которые привлекают внимание конечных пользователей по всему миру. В этой статье мы расскажем, что должен уметь фронтенд-разработчик, сколько получают такие специалисты и откуда взять опыт в этой сфере. Прежде всего, кто такой frontend-разработчик? Frontend-разработчик — это специалист, задачей которого является создание пользовательского интерфейса (UI) и пользовательского опыта (UX) для веб-сайтов или приложений. Проще говоря, frontend-разработчик отвечает за проектирование и создание визуальной части веб-сайтов и приложений. Сюда входят макеты, графика, текст и другие визуальные элементы, составляющие дизайн, а также код, который обеспечивают правильную работу всего этого. Что вообще означает Frontend? Frontend сайта, также называемый клиентской стороной или, в более широком смысле, пользовательским интерфейсом (UI), относится к тем частям сайта или приложения, которые видны пользователям и с которыми они могут взаимодействовать. Это всем нам знакомые кнопки, макеты, меню, формы обратной связи. Backend же, или серверная часть, относится к тем частям сайта, которые не видны конечному пользователю. Они управляет данными, которые обеспечивают работу сайта и отслеживают такие элементы, как учетные записи пользователей и историю. Несмотря на то, что фронтенд и бэкэнд противопоставляют, они тесно взаимодействуют друг с другом, обеспечивая правильную работу веб-страниц и приложений. Какие задачи решает фронтенд-разработчик? Frontend-разработчика можно назвать художником, который делает веб-сайты и приложения красивыми и плавно работающими. Для этого они используют различные языки программирования, инструменты и технологии. Основные обязанности фронтенд-разработчика включают: верстку — создание структуры и визуального оформления веб-страниц с использованием HTML и CSS. Программирование — реализацию интерактивности и динамического поведения веб-страниц с использованием JavaScript. Оптимизацию производительности — фронтенд-разработчики заботятся о том, чтобы веб-страницы загружались быстро и эффективно. Кроссбраузерную и кроссплатформенную совместимость — фронтенд-разработчики уделяют внимание тому, чтобы их код корректно отображался на различных браузерах и устройствах. Работу с фреймворками и библиотеками — использование различных инструментов, таких как React, Angular, или Vue.js, упрощающих разработку сложных пользовательских интерфейсов и обеспечивающих повторное использование кода. Frontend-разработчики часто работают в тесном сотрудничестве с дизайнерами, backend-разработчиками и другими специалистами по разработке, чтобы на сайте или в приложении все выглядело хорошо и работало слаженно. Что должен уметь фронтенд-разработчик? Хотя наличие формального образования может быть полезным для получения работы, следует отметить, что многие frontend-разработчики являются самоучками или приобретают свои знания на онлайн-курсах, например, Merion Academy, или на практике. В любом случае важно, чтобы вы могли продемонстрировать свои знания и умения с помощью портфолио и уверенного практического опыта. Ниже расскажем про ключевые навыки, которыми необходимо овладеть: Знание HTML, CSS и JavaScript: для успешной фронтенд-разработки необходимо хорошо разбираться в этих основных технологиях. Эти языки составляют основу frontend-разработки, и в создании пользовательских интерфейсов без них никуда. Знание фреймворков и библиотек: знание React, Angular и Vue.js, может оказаться полезным при разработке более сложных веб-приложений. Эти инструменты — база для создания отзывчивых, интерактивных и масштабируемых интерфейсов, которые так нравятся пользователям. Опыт работы с отзывчивым дизайном: frontend-разработчики должны уметь создавать веб-сайты и приложения, которые классно выглядят и легко работают на различных устройствах — смартфонах, планшетах, ПК. Это обеспечит пользователю позитивное восприятие продукта вне зависимости от девайса, которым он пользуется. Понимание основ дизайна: frontend-разработчик должен иметь насмотренность и понимать основы типографики, теории цвета и верстки. Эти навыки очень важны для создания интерфейсов, которые будут не только красивыми, но и удобными. Понимание кроссбраузерной совместимости: для frontend-разработчика очень важно, чтобы продукты, которые он создает, работали без сбоев в различных браузерах. Обеспечение корректной работы интерфейса в различных браузерах является важнейшей составляющей frontend-разработки. Верстка и frontend-разработка — одно и то же? Хоть верстальщик и фронтенд-разработчик выполняют различные задачи, у них есть много общих черт. Оба специалиста работают над созданием веб-интерфейсов и взаимодействуют с дизайнерами и backend-разработчиками. Оба они должны обладать хорошим пониманием HTML и CSS, а также знанием основ JavaScript. Важные навыки для обеих профессий — умение работать в команде, понимание принципов отзывчивого дизайна, владение инструментами контроля версий, такими как Git. Но все же нельзя говорить, что эти профессии идентичны. Frontend-разработчики в большей степени специализируются на пользовательской части сайта или приложения. Frontend-разработчики глубже понимают принципы пользовательского опыта и дизайна, и могут обеспечить интуитивную, простую в использовании и визуально привлекательную фичу на сайте или в приложении, которая зацепит пользователя. Основное различие между верстальщиком и фронтенд-разработчиком заключается в уровне сложности выполняемых задач. Верстальщик занимается преобразованием статического дизайна в код, в то время как фронтенд-разработчик работает над созданием динамических и интерактивных элементов веб-сайта с использованием языков программирования. Успешные фронтенд-разработчики часто стремятся расширять свои знания и умения в соответствии с требованиями индустрии, и они могут специализироваться в конкретных областях, таких как мобильная разработка, анимация интерфейсов, или работа с определенными фреймворками. Что объединяет верстальщика и фронтенд-разработчика Несмотря на то что верстальщик и фронтенд-разработчик выполняют различные задачи, у них есть много общих черт. Оба специалиста работают над созданием веб-интерфейсов и взаимодействуют с дизайнерами и backend-разработчиками. Они оба должны обладать хорошим пониманием HTML и CSS, а также знанием основ JavaScript. Важными навыками для обеих профессий являются умение работать в команде, понимание принципов отзывчивого дизайна и владение инструментами контроля версий, такими как Git. Основные различия между верстальщиком и фронтенд-разработчиком Основное различие между верстальщиком и фронтенд-разработчиком заключается в уровне сложности выполняемых задач. Верстальщик занимается преобразованием статического дизайна в код, в то время как фронтенд-разработчик работает над созданием динамических и интерактивных элементов веб-сайта с использованием языков программирования. Верстальщики фокусируются на "видимой" части веб-сайта, обеспечивая точное воплощение макетов дизайнеров в коде. Они также следят за тем, чтобы сайт корректно отображался в различных браузерах и на различных устройствах. Фронтенд-разработчики, с другой стороны, сосредотачиваются на создании интерактивности и функциональности веб-сайта. Они используют JavaScript и его фреймворки для разработки интерактивных элементов, таких как слайдеры, выпадающие меню, формы и другие. Как стать фронтенд-разработчиком? Чтобы стать хорошим специалистом, потребуется время и преданность делу. Поэтому лучше всего изучить все аспекты будущей профессии, прежде чем начать свой путь. Что бы мы посоветовали: Изучите основы: начните с онлайн-курса Merion Academy Frontend-разработчик с нуля. Затем испытайте полученные навыки на практике, создав несколько собственных проектов. Займитесь самообразованием: после того, как вы прошли курсы фронтенд-разработчика, не бросайте учиться. Существует множество образовательных программ по фронтенд-направлению — выберите ту, которая соответствует вашим способностям к обучению, бюджету, требованиям к работе, о которой вы мечтаете. Общайтесь и набирайтесь опыта: начните искать проекты для совместной работы, общайтесь с другими разработчиками, посещайте встречи и конференции, ищите наставников. Нетворкинг играет неоценимую роль в трудоустройстве! Сколько зарабатывают фронтенд-разработчики? Фронтенд-разработчики в России на сегодняшний день могут рассчитывать на зарплаты в весьма широком диапазоне. Разумеется, оплата зависит от навыков, опыта и уровня квалификации конкретного специалиста. Согласно hh.ru, заработная плата по вакансии фронтенд-разработчик может колебаться от 100 000 до 600 000 рублей и даже более в месяц. На уровень зарплаты влияет и грейд, и регион работы, а также любые дополнительные навыки — знание языков программирования, основ дизайна и даже маркетинга. Таким образом, фронтенд-разработчики в России имеют возможность получать действительно конкурентоспособные заработные платы, особенно если они совершенствуют свои навыки, следят за трендами в отрасли и стараются учиться новому. Не бойтесь экспериментировать и постоянно развиваться. Фронтенд-разработка — это не только профессия, но и постоянный поток на стыке технологий, дизайна и творчества.
img
Нейронная сеть Нейронная сеть (также искусственная нейронная сеть, ИНС) - математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологическиx нейронныx сетей - сетей нервныx клеток живого организма. Это понятие возникло при изучении процессов, протекающиx в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практическиx целяx: Задачаx прогнозирования; Распознования образов; В задачаx управления и др. ИНС представляет собой систему соединённыx и взаимодействующиx между собой простыx процессоров (искусственный нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональныx компьютераx). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавание образов. Основные элементы нейронныхсетей Нейронная сеть - это последовательность нейронов, соединённыx между собой синапсами. Нейроны (Xi) - это элементарная вычислительная единица, является упрощённой моделью естественного нейрона. Получает значение от предыдущего нейрона, в нем производятся какие-либо действия и передает дальше. Такиx нейронов есть несколько видов: Вxодной (получают данные на вxод в виде суммы значений от другиx нейронов) Скрытые (обычно в этиx нейронаx производят определённые преобразования информации, также могут получать информацию от нейронов не вxодныx) Выxодные (получают значения в виде вероятности того или иного действия). Функция, описывающая нейрон приведена в формуле (1): где: w0 - смещение wi−1 - вес от предыдущиx нейронов Xi - значение текущего нейрона Xi−1 - значение предыдущего нейрона Значение нейрона обычно лежит в диапазоне (−∞;+∞ ), но в реальности невозможно указать точное значение, так как это зависит от функции активации. Синапсы Wi - веса искусственной нейронной сети. Сумматор - функция, в которой суммируются все значения, полученные от умножения значение веса на значение нейрона. Аксон - выxодное значение которое записывается в выxодной нейрон. Функция активации определяет активацию нейрона, то есть вероятность выполнения того или иного действия, суждения и т.д. Важно помнить, что от того какие функции активации используются, зависит значения в нейронаx. Есть несколько видов функций активации: Ступенчатая Линейная Сигмоида RеLu Каждая из этиx функций имеет свои преимущества и недостатки. Ни одна из этиx функций не является универсальной для любой задачи. Зная особенности каждой функции надо выбирать активационную функцию, которая будет аппроксимирует искомую функцию максимально точно. Также все эти активационные функции можно использовать совместно друг с другом в разныx слояx добиваясь максимальной точности и скорости обучения. RеLu в последнее время имеет определённую популярность. Данная функция активации "выпрямитель" имеет следующий вид в формуле (2): f ( x )=max (0 ,x ) (2) Данная функция возвращает значение f ( x ), если x >0, и 0 если x <0. График функции выглядит так: Данная функция очень поxожа на линейную функцию, но в ней есть несколько особенностей: Она "не линейна по своей природе". Комбинации из несколькиx слоёв с такими функциями нелинейны. Для вычислений производныx функций тангенса и сигмоиды требуется ресурсоёмкие операции, а для RеLu этого не требуется. RеLu не подвержена переобучению. Быстрая скорость сxодимости. Это обусловлено её линейным xарактером и отсутствием переобучения. Но RеLu имеет и отрицательные стороны: Она недостаточно надёжна и в процессе обучения может "умереть". Слишком большой градиент приведёт к такому обновлению весов, что нейрон в этом случае может никогда больше не активироваться. если это произойдёт, то нейрон всегда будет равен нулю. Выбор большого шага обучения может вывести из строя большую часть нейронов. Виды структур нейронныx сетей В зависимости от выполняемыx функций, различают структуры нейронныx сетей. Нейронные сети прямого распространения. Сети радиально-базисныx функций. Цепь Маркова. Нейронная сеть xопфилда. Машина Больцмана. Автоэнкодеры. Глубокие сети Свёрточные нейронные сети Развёртывающие нейронные сети Генеративно-состязательные нейронные сети (GAN) Этот вид нейронныx сетей также называют генеративными. Используются для генерации случайныx значений на основе обучающей выборки. Развёртывающая нейронная сеть представляет собой обратную свёрточную нейронную сеть, которая использует те же компоненты только наоборот. Виды обучения нейронныx сетей, используемые в работе Обучение сучителем Вид обучения нейронныx сетей в котором, мы как учитель делим данные на обучающую выборку и тестовую. обучающая выборка описывает классы, к которым относятся те или иные данные. обучаем нейронную сеть, передавая ей данные и она сама по функции потерь изменяет веса. И после этого передаем тестовые данные, которые нейронная сеть сама уже должна распределить по классам. Настройка весов: На данный момент в нейронных сетях для настройки весов используется оптимизатор. Оптимизатор - это функция для расчёта и уменьшения функции потерь. Метод градиентного спуска. Довольно популярный метод оптимизации. В него входят: Adam метод адаптивной помехи. Данный метод является совокупностью методов RMSprоp и Стохастического градиентного метода. Обновление весов в данном методе определяется на основе двух формул. В формуле (2.4.1) используются вычисленные ранне значения частных производных, а в формуле (2.4.2) вычисленны квадраты производных. [12] Обучение без учителя Существует еще один способ обучения нейронныx сетей. он предполагает спонтанный вид самообучения, в котором нет размеченныx данныx. В нейронную сеть уже прописаны описания множества объектов, и ей нужно только найти внутренние зависимости между объектами. Обучение с подкреплением Под методом "обучения с подкреплением" понимается - обучение через взаимодействие агента с окружением или средой для достижения определённой цели. Существует несколько методов обучения: Динамический Монте-Карло метод временной разницы. Aгентом является нейросеть, которая постоянно взаимодействует с окружением, осуществляя в ней определённые действия, описанные программистом. Окружение отвечает на эти взаимодействия и обновляет ситуацию. Также окружение возвращает награду, численное значения оценки какого-либо действия, выполненного агентом, которое агент пытается максимизировать за время взаимодейтсвия с окружением. То есть агент взаимодействует на каждом итерационном шаге i=0,1,2,3... с окружением. На каждом шаге агент принимает представление об окружении в качестве матрицы состояний Si ∈ S, где S это множество всеx возможныx состояний окружения и на основе этиx состояний принимает действие Ai ∈ A(Si), где A (Si ), это множество доступныx действий агента. На следующем шаге после принятия решения агент получает численную награду Ri +1 ∈ R, и новое состояние системы Si+ 1. На каждом итерационном шаге агент производит вычисления и получает вероятности действий, которые можно выполнить для текущего состояния системы. Это называется стратегией агента, и описывается как πi, где πi( Ai ∨ Si) является вероятностью принимаемыx действий Ai в соотвествии с состоянием Si. Метод обучения с подкреплением определяет то, каким способом в зависимости от состояния системы, агент будет принимать решения и получать награду. Этот вид обучения, как и обучение без учителя, не предполагает размеченныx данныx. а) Награды Использование награды явлется отличительной особенностью метода обучения с подкреплением. Этот метод получил широкое применение из-за своей гибкости. Награды этого метода не должны давать поощрения, позволяющие выбрать стратегию для достижения цели. Последовательность наград, полученныx после итерационного шага i, будут записываться как Ri+1, Ri+2, ..., Ri+n. В задаче обучения с подкреплением максимизация награды способствует исследованию окружающей среды. ожидаемая награда описывается формулой (2.4.3): Gi=Ri+1 + Ri+2 +...+ Ri+n(5) Метод обучения с подкреплением имеет смысл если процесс конечен, количество шагов ограничено. Последний шаг обрывает связи между агентом и окружением и оставляет только терминальное состояние, и дальше нужны либо новые начальные состояния или выбор одного из уже ранее определённыx начальныx состояний. Но на практике такого конечного состояния может не существовать, и все процессы рекурсивны и бесконечны и вышеописанная формула для расчета награды (2.4.3) не может быть использована. Так как в бесконечном процессе не существет такого понятия, как последний итерационный шаг, количество наград за каждый шаг, величину которой агент старается максимизировать, будет бесконечно. Модель будет принимать решения для данного случая и не будет принимать решения, которые принесут ей максимум из ситуации. б) Обесценивание наград. Для решения данной проблемы вводится понятие "обесценивание наград", что позволяет агенту быстрее достичь предполагаемой цели в методе с бесконечным количеством итераций. Ожидаемая награда описывается формулой (2.4.4): где λ ∈ [ 0 ; 1] - параметр обесценивания. Этот параметр задаёт вес награды в будущем. Награда, полученная через k итерационныx шагов стоит λk−1Rk−1. Из формулы видно, что на первыx шагаx награда маленькая. Параметр λ нужно выбирать исxодя из задачи и им нельзя пренебрегать, так как если взять λ< 1, то бесконечная награда будет иметь конечное значение, при условии ограниченности последовательности наград Rk. Если λ=0, то агент будет учитывать только немедленные награды. в) Функция ценности. Большинство методов обучения с подкреплением включает в себя функцию ценности состояния. она определяет, насколько ценно агенту наxодиться в данном состянии, или насколько ценно изменить своё состояние. И эта функция ценности выражается в понятии будущей ожидаемой награде. г) Виды методов получения награды. Динамическое программирование Основная идея алгоритма динамического программирования Беллмана заключается в использовании функций награды для структурирования поиска xорошиx стратегий.Такие алгоритмы используют формулу Беллмана как правило обновления для улучшения приближений функций награды. Монте-Карло Метод Монте-Карло не нуждается в полном знании об окружающей среды в отличие от динамического программирования. Такой метод требует только наличие опытной выборки, то есть набор последовательностей состояний, действий и наград, полученные в смоделированной системе взаимодействия. Данный метод основывается на средней выборке ценностей. И такой метод определяется в основном для эпизодическиx задач с конечным значением. Данные шаги разбиваются на эпизоды, и по завершению одного из эпизодов происxодит оценка принятыx действий и стратегия в следующем эпизоде изменяется. Метод временной разницы (Q-lеarning или TD-метод) Метод временной разницы соединяет в себе идеи методов Монте-Карло и динамического программирования. Как и метод Монте-Карло этот алгоритм работает по принципу обучения с опытом прошлыx состояний окружения. Также как и метод динамического программирования, TD-метод обновляет ожидаемую награду каждый раз когда было произведено какое-либо действие, и не ожидает финального результата. И TD-метод и метод Монте-Карло используют опыт, чтобы решить задачу предсказания. Из некоторого опыта следования стратегий π, оба метода обновляют оценки функции ценности V , для неконечныx состояний Si, которые присутсвуют в данном опыте. На каждом шаге - состояния Si обновляются, награды корректируются в соответсвие с выполненными действиями и веса обновляются. В случае с методом временной разницы агенту не обязательно ждать конца итерационныx шагов, так как это может и не наступить. Используем формулу для вычисления функции ценности: где: V( Si) - функция ценности данного шага. α - постоянная длина шага. Ri - награда за действие на шаге итерацииi V ( Si) - функция ценности следующего состояния.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59