По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Потренируйтесь в ответах на популярные вопросы по SQL на собеседованиях. В данной статье приведен список типовых вопросов по SQL, с которыми можно столкнуться на настоящем собеседовании, и даны ответы. Чтобы получить максимум из прочитанного, постарайтесь сначала отвечать на вопросы самостоятельно. Удачи! 1. Что такое SQL? SQL расшифровывается как Structured Query Language – язык структурированных запросов. Это язык программирования для взаимодействия с данными, которые хранятся в системе управления реляционными базами данных. Синтаксис SQL схож с английским языком, поэтому его легко читать, писать и интерпретировать. Он позволяет вам писать запросы, определяющие подмножество данных, которые вы ищите. Эти запросы можно сохранять, уточнять, обмениваться ими и запускать в различных базах данных. 2. Что такое база данных? База данных (БД) – это набор данных, хранимых на компьютере. При этом сами данные структурированы таким образом, что их можно было легко получить. 3. Что такое реляционная база данных? Реляционная база данных – это разновидность базы данных. В ней используется структура, которая позволяет нам идентифицировать и обращаться к данным в привязке к другим частям данных из БД. Данные в реляционной БД часто организованы в виде таблиц. 4. Что такое РСУБД? Система управления реляционными базами данных (РСУБД) – это программа, позволяющая вам создавать, обновлять и администрировать реляционную базу данных. Для доступа к базам данных большинство РСУБД использует язык SQL. Самой популярной РСУБД считается MySQL. К другим системам относятся PostgreSQL, Oracle DB, SQL Server и SQLite. 5. Что такое таблица? Таблица – это набор данных, распределенных по строкам и столбцам. Иногда их называют «связями». В таблицах могут быть сотни, тысячи и иногда даже миллионы строк данных. 6. Что такое строка и столбец в таблице? Строка – это одна запись данных в таблице. Столбец – это набор значений данных определенного типа. 7. Что такое тип данных? Тип данных – это атрибут, который определяет тип данных в столбце. В каждом столбце БД есть тип данных. Несколько часто используемых типов данных: INTEGER, TEXT, DATE, REAL. 8. Что такое первичный и внешний ключ? Первичный ключ (primary key) – это столбец, который однозначно определяет каждую строку в таблице. Первичные ключи должны соответствовать следующим требованиям: ни одно значение не может быть пустым (NULL), каждое значение должно быть уникальным и в таблице не может быть более одного столбца с первичным ключом. Например, в таблице customers первичным ключом будет customer_id. Внешний ключ (foreign key) – это первичный ключ для одной таблицы, который присутствует и в другой таблице. Например, есть дополнительная таблица orders. В каждом заказе может храниться информация о клиенте. Поэтому внешним ключом будет столбец customer_id. 9. В чем отличие ALTER от UPDATE? Оператор ALTER используется для добавления нового столбца в таблицу. Он изменяет структуру таблицы. Оператор UPDATE используется для редактирования строки в таблице. Он изменяет существующие записи в таблице. 10. Что такое запрос? Запрос (query) – это оператор SQL для получения информации, хранимой в базе данных. Запросы позволяют нам «общаться» с базой данных, задавая вопросы и возвращая результирующий набор подходящих данных. 11. Что такое подзапрос? Подзапрос (subquery) – это внутренний запрос, вложенный во внешний. Запросы можно вложить через операторы SELECT, INSERT, UPDATE или DELETE. Если есть подзапрос, то он будет выполняться до запуска внешнего оператора. 12. Что такое ограничения? Ограничения (constraints) – это набор правил, через которых базе данных сообщается об ограничении типа данных, хранимых в столбцах. Они предписывают базе данных отклонять введенные данные, если они не соответствуют ограничению. Ограничения добавляют информацию о том, как может использоваться столбец, и вызываются после типа данных для столбца. Несколько примеров ограничений: PRIMARY KEY: однозначно определяет каждую строку и требует уникальности каждого значения. UNIQUE: каждое значение в столбце должно отличаться. NOT NULL: в столбцах обязательно должны быть значения. DEFAULT: дополнительный аргумент, который подставляется в качестве предполагаемого значения для каждой новой строки, если в ней не указано значение для этого столбца. 13. Что такое оператор? Оператор (statement) – это текст, который база данных распознает как допустимую команду. Операторами можно пользоваться для выполнения таких задач, как изменение структуры таблицы, обновление данных или извлечение данных из БД. Структура операторов может варьировать, но каждый из них должен заканчиваться точкой с запятой (;). Количество строк в операторе неважно. Оператор можно записать в одну строку или разделить на несколько (для лучшей читабельности). 14. Как вы проверите, есть ли в поле значение или нет? Если в поле отсутствует значение, оно обозначается как NULL. Чтобы проверить поля на пустые значения, можно прописать в качестве условия IS NULL: WHERE [столбец] IS NULL. Чтобы найти поля со значением, добавьте в условие IS NOT NULL: WHERE [столбец] IS NOT NULL. 15. Чем отличаются DISTINCT и UNIQUE? DISTINCT – это ключевое слово, которым мы пользуемся, если хотим вернуть уникальные значения на выводе. Оно отсеивает все повторяющиеся значения в конкретном столбце. UNIQUE – это ограничение, которым пользуются, чтобы все значения столбца отличались. Оно похоже на PRIMARY KEY, с той лишь разницей, что в таблице может быть множество разных столбцов с UNIQUE. 16. Для чего используются агрегатные функции? Агрегатные функции используются для выполнения вычислений на одном или нескольких значениях и возвращают одиночное значение с осмысленной информацией. Несколько примеров агрегатных функций: COUNT(), SUM(), MAX(), MIN(), AVG() и ROUND(). 17. Что такое соединение (JOIN)? JOIN – это способ объединения строк из двух и более таблиц посредством общего столбца. 18. В чем отличие INNER JOIN от LEFT JOIN? INNER JOIN используется для объединения строк из двух таблиц, которые соответствуют условию ON. В конечный результат не попадают строки, не соответствующие условию ON. LEFT JOIN сохраняет все строки из первой таблицы, вне зависимости от того, есть ли для них совпадающая по условию ON строка во второй таблице. 19. Для чего нужны оконные функции? Оконные функции (windows functions) нужны в случаях, когда вы хотите сохранить значения своей исходной таблицы и параллельно отобразить сгруппированную или суммарную информацию. Они похожи на агрегатные функции, но не сокращают количество строк в результате, а объединяют и группируют их в несколько результатов. 20. Что такое индексы и для чего они нужны? Индексы – это мощный инструмент, который используется в фоновом режиме БД для ускорения запросов и выступает в роли справочной таблицы для данных. Они нужны для эффективного хранения данных и быстрого их получения, что может быть критически важным для успеха крупных технологических компаний, которые обрабатывают петабайты данных каждый день.
img
В этой статье мы рассмотрим IPv6 (Internet Protocol version 6), причины, по которым он нам нужен, а также следующий аспект: различия с IPv4. Пока существует Интернет, используется протокол IPv4 для адресации и маршрутизации. Однако проблема с IPv4 заключается в том, что у нас закончились адреса. Так что же случилось с IPv4? Что же пошло не так? У нас есть 32 бита, которые дают нам 4 294 467 295 IP-адресов. Когда появился Интернет, мы получили сети класса А, В или С. Класс С дает нам блок из 256 IP-адресов, класс B - это 65.535 IP-адресов, а класс A даже 16 777 216 IP-адресов. Крупные компании, такие как Apple, Microsoft, IBM и др. имеют одну или несколько сетей класса А. Но действительно ли им нужно 16 миллионов IP-адресов? Большинство из этих IP-адресов не были использованы. Поэтому мы начали использовать VLSM, чтобы использовать любую маску подсети, которая нам нравится, и создавать более мелкие подсети, а не только сети класса A, B или C. У нас также имеется NAT и PAT, следовательно, мы имеем много частных IP-адресов за одним публичным IP-адресом. Тем не менее интернет вырос так, как никто не ожидал 20 лет назад. Несмотря на все наши крутые трюки, такие как VLSM и NAT/PAT, нам нужно было больше IP-адресов, и поэтому родился IPv6. А что случилось с IPv5? Хороший вопрос ... IP-версия 5 была использована для экспериментального проекта под названием "Протокол интернет-потока". Он определен в RFC, если вас интересуют исторические причины: http://www.faqs.org/rfcs/rfc1819.html IPv6 имеет 128-битные адреса по сравнению с нашими 32-битными IPv4-адресами. Имейте в виду, что каждый дополнительный бит удваивает количество IP-адресов. Таким образом мы переходим от 4 миллиардов к 8 миллиардам, 16,32,64 и т. д. Продолжайте удвоение, пока не достигнете 128-битного уровня. Просто вы увидите, сколько IPv6-адресов это даст нам: 340,282,366,920,938,463,463,374,607,431,768,211,456; Можем ли мы вообще произнести это? Давайте попробуем вот это: 340 - ундециллионов; 282 - дециллионов; 366 - нониллионов; 920 - октиллионов; 938 - септиллионов; 463 - секстиллионов; 463 - квинтильонов; 374 - квадрильонов; 607 - триллионов; 431 - биллионов; 768 - миллионов; 211 - тысяч; 456. Это умопомрачительно... это дает нам достаточное количество IP-адресов для сетей на Земле, Луне, Марсе и остальной Вселенной. IPv6-адреса записываются в шестнадцатеричном формате. IPv4 и IPv6 несовместимы друг с другом, поэтому многие протоколы были обновлены или заменены для работы с IPv6, вот некоторые примеры: OSPF был обновлен с версии 2 (IPv4) до версии 3 (IPv6); ICMP был обновлен до версии ICMP 6; ARP был заменен на NDP (Neighborhood Discovery Protocol). Заголовок пакета IPv6 содержит адреса источника и назначения, но по сравнению с IPv4 он стал намного проще: Вместо того чтобы уже добавлять все поля в заголовок, заголовок IPv6 использует "следующий заголовок", который ссылается на необязательные заголовки. Поскольку заголовок намного проще, маршрутизаторам придется выполнять меньше работы. А как насчет маршрутизации? Есть ли разница между IPv4 и IPv6? Давайте рассмотрим варианты маршрутизации: Static Routing; RIPng; OSPFv3; MP-BGP4; EIGRP. Вы все еще можете использовать статическую маршрутизацию, как и в IPv4, ничего нового здесь нет. RIP был обновлен и теперь называется RIPng или RIP Next Generation. OSPF для IPv4 на самом деле является версией 2, а для IPv6 у нас есть версия 3. Это отдельный протокол, он работает только на IPv6. Есть только незначительные изменения, внесенные в OSPFv3. BGP (Border Gateway Protocol) - это протокол маршрутизации, который объединяет Интернет вместе.MP-BGP расшифровывается как Multi-Protocol BGP, и он может маршрутизировать IPv6. EIGRP также поддерживает IPv6. Просто имейте в виду, что OSPF и EIGRP поддерживают IPv6, но это отдельные протоколы. Если у вас есть сеть с IPv4 и IPv6, вы будете запускать протокол маршрутизации для IPv4 и еще один для IPv6. Запуск IPv4 и IPv6 одновременно называется двойным стеком. Поскольку эти два протокола несовместимы, в будущем будет происходить переход с IPv4 на IPv6. Это означает, что вы будете запускать оба протокола в своей сети и, возможно, однажды вы сможете отключить IPv4, так как весь интернет будет настроен на IPv6. Давайте взглянем на формат IPv6-адреса: 2041:0000:140F:0000:0000:0000:875B:131B Во-первых, он шестнадцатеричный и гораздо длиннее, чем IPv4-адрес. Существует восемь частей, состоящих из 4 шестнадцатеричных цифр каждая, поэтому 128-битный адрес может быть представлен 32-битными шестнадцатеричными символами. Если вы забыли, как работает шестнадцатеричный код, взгляните на таблицу ниже: В шестнадцатеричной системе счисления мы считаем от 0 до F точно так же, как мы считали бы от 0 до 15 в десятичной системе счисления: A = 10; B = 11; C = 12; D = 13; E = 14; F = 15. Использование шестнадцатеричного кода помогает сделать наши адреса короче, но ввод адреса IPv6 - это все еще большая работа. Представьте себе, что вы звоните другу и спрашиваете его, может ли он пинговать IPv6-адрес 2041:0000:140F:0000:0000:0000:875B:131B, чтобы узнать, может ли он достучаться до своего шлюза по умолчанию. Чтобы облегчить нам работу с такими адресами, можно сделать IPv6-адреса короче. Вот пример: Оригинальный: 2041: 0000:140F:0000:0000:0000:875B:131B Сокращенный: 2041: 0000:140F:: 875B:131B Если есть строка нулей, вы можете удалить их, заменив их двойным двоеточием (::). В приведенном выше IPv6-адресе удалены нули, сделав адрес немного короче. Вы можете сделать это только один раз. Мы можем сделать этот IPv6 адрес еще короче используя другой трюк: Сокращенный: 2041: 0000:140F:: 875B:131B; Еще короче: 2041:0:140F:: 875B:131B Если у вас есть блок с 4 нулями, вы можете удалить их и оставить там только один ноль. Мы также можем удалить все впередистоящие нули: Оригинальный: 2001:0001:0002:0003:0004:0005:0006:0007; Сокращенный: 2001:1:2:3:4:5:6:7 Подытожим небольшие правила: Строку нулей можно удалить, оставив только двоеточие (::). Вы можете сделать только это однажды.; 4 нуля можно удалить, оставив только один ноль. Впередиидущие нули могут быть удалены в пределах одного блока.; Вы не можете удалить все нули, иначе ваше устройство, работающее с IPv6 не поймет, где заполнить нули, чтобы снова сделать его 128-битным.; Вычисление префикса IPV6 мы пропустим, так как ресурсов, рассказывающих об этом в сети Интернет, специальных книгах полно. Нет смысла повторяться. Потребуется некоторое время, чтобы привыкнуть к IPv6-адресации и поиску префиксов, но чем больше вы этим занимаетесь, тем дальше становиться проще. В оставшейся части этой статьи мы еще немного поговорим о различных типах адресации IPv6. IPv4-адреса организованы с помощью "системы классов", где класс A, B и C предназначены для одноадресных IP-адресов, а класс D-для многоадресной передачи. Большинство IP-адресов в этих классах являются публичными IP-адресами, а некоторые-частными IP-адресами, предназначенными для наших внутренних сетей. Нет такой вещи, как классы для IPv6, но IANA действительно зарезервировал определенные диапазоны IPv6 для конкретных целей. У нас также есть частные и публичные IPv6-адреса. Первоначально идея IPv4 заключалась в том, что каждый хост, подключенный к Интернету, будет иметь общедоступный IP-адрес. Каждая компания получит сеть класса А, В или С, и сетевые инженеры в компании будут дополнительно подсоединять ее так, чтобы каждый хост и сетевое устройство имели общедоступный IP-адрес. Проблема, однако, заключается в том, что адресное пространство IPv4 было слишком маленьким, и выдавать полные сети A, B или C было не очень разумно. Даже если вам требуется только небольшое количество IP-адресов, вы все равно получите сеть класса C, которая дает вам 254 пригодных для использования IP-адреса. Компания, которой требуется 2.000 IP-адресов, получит класс B, который дает вам более 65.000 IP-адресов. Поскольку у нас заканчивались IP-адреса, мы начали использовать такие вещи, как VLSM (избавляясь от идеи класса A, B, C) и настраивали частные IP-адреса в наших локальных сетях, а вместо этого использовали NAT/PAT. Протокол IPv6 предлагает два варианта для одноадресной рассылки: Global Unicast; Unique Local. Раньше существовал третий диапазон адресов, называемый "site local", который начинался с FEC0:: / 10. Этот диапазон изначально предназначался для использования во внутренних сетях, но был удален из стандарта IPv6. Global Unicast передачи IPv6 похожи на публичные IPv4-адреса. Каждая компания, которая хочет подключиться к интернету с помощью IPv6, получит блок IPv6-адресов, которые они могут дополнительно разделить на более мелкие префиксы, чтобы все их устройства имели уникальный IPv6-адрес. Зарезервированный блок называется префиксом глобальной маршрутизации. Поскольку адресное пространство IPv6 настолько велико, каждый может получить префикс глобальной маршрутизации. Давайте посмотрим, как назначаются префиксы IPv6-адресов. Допустим, компания получает префикс 2001:828:105:45::/64. Как они его получили? Мы пройдемся по этой картине сверху вниз: IANA отвечает за распределение всех префиксов IPv6. Они будут назначать реестрам различные блоки. ARIN - для Северной Америки, RIPE -для Европы, Ближнего Востока и Центральной Азии. Всего таких реестров насчитывается 5. IANA присваивает 2001: 800:: /23 RIPE и 2001: 0400::/23 ARIN (и многие другие префиксы).; ISP, который попадает под реестр RIPE, запрашивает блок пространства IPv6. Они получают от них 2001: 0828:: / 32, которые в дальнейшем могут использовать для клиентов.; ISP дополнительно подсоединит свое адресное пространство 2001:0828::/32 для своих пользователей. В этом примере клиент получает префикс 2001:828:105::/48.; IANA зарезервировала определенные диапазоны адресов IPv6 для различных целей, точно так же, как это было сделано для IPv4. Первоначально они зарезервировали IPv6-адреса, которые с шестнадцатеричными 2 или 3 являются global unicast адресами. Это можно записать как 2000:: / 3. В настоящее время они используют все для global unicast рассылки, которая не зарезервирована для других целей. Некоторые из зарезервированных префиксов являются: FD: Unique Local; FF: Multicast; FE80: Link-Local. Обсудим префиксы local и link-local В моем примере клиент получил 2001: 828:105:: / 48 от провайдера, но прежде чем я смогу что-либо сделать с этим префиксом, мне придется разбить на подсети его для различных VLAN и point-to-point соединений, которые у меня могут быть. Подсети для IPv6 - это примерно то же самое, что и для IPv4, но математика в большинстве случаев проще. Поскольку адресное пространство настолько велико, почти все используют префикс /64 для подсетей. Нет смысла использовать меньшие подсети. При использовании IPv4 у нас была часть "сеть" и "хост", а класс A, B или C определяет, сколько битов мы используем для сетевой части: Когда мы используем подсети в IPv4 мы берем дополнительные биты от части хоста для создания большего количества подсетей: И, конечно, в результате у нас будет меньше хостов на подсеть. Подсети для IPv6 используют аналогичную структуру, которая выглядит следующим образом: Префикс global routing был назначен вам провайдером и в моем примере клиент получил его 2001:828:105::/48. Последние 64 бита называются идентификатором интерфейса, и это эквивалентно части хоста в IPv4. Это оставляет нас с 16 битами в середине, которые я могу использовать для создания подсетей. Если я хочу, я могу взять еще несколько битов из идентификатора интерфейса, чтобы создать еще больше подсетей, но в этом нет необходимости. Используя 16 бит, мы можем создать 65.536 подсетей ...более чем достаточно для большинства из нас. И с 64 битами для идентификатора интерфейса на подсеть, мы можем иметь восемнадцать квинтиллионов, четыреста сорок шесть квадриллионов, семьсот сорок четыре триллиона, семьдесят четыре миллиарда, семьсот девять миллионов, пятьсот пятьдесят одну тысячу, шестьсот с чем-то хостов на подсеть. Этого должно быть более чем достаточно! Использование 64-битного идентификатора интерфейса также очень удобно, потому что он сокращает ваш IPv6-адрес ровно наполовину! Допустим, наш клиент с префиксом 2001: 828: 105:: / 48 хочет создать несколько подсетей для своей внутренней сети. Какие адреса мы можем использовать? 16 бит дает нам 4 шестнадцатеричных символа. Таким образом, все возможные комбинации, которые мы можем сделать с этими 4 символами, являются нашими возможными подсетями. Все, что находится между 0000 и FFFF, является допустимыми подсетями: 2001:828:105:0000::/64; 2001:828:105:0001::/64; 2001:828:105:0002::/64; 2001:828:105:0003::/64; 2001:828:105:0004::/64; 2001:828:105:0005::/64; 2001:828:105:0006::/64; 2001:828:105:0007::/64; 2001:828:105:0008::/64; 2001:828:105:0009::/64; 2001:828:105:000A::/64; 2001:828:105:000B::/64; 2001:828:105:000C::/64; 2001:828:105:000D::/64; 2001:828:105:000E::/64; 2001:828:105:000F::/64; 2001:828:105:0010::/64; 2001:828:105:0011::/64; 2001:828:105:0012::/64; 2001:828:105:0013::/64; 2001:828:105:0014::/64; И так далее. Всего существует 65 535 возможных подсетей, поэтому, к сожалению, я не могу добавить их все в статью...теперь мы можем назначить эти префиксы различным соединениям типа point-to-point, VLAN и т. д.
img
Основной причиной серьезных атак является предоставление доступа к таким активам, которые не должен быть открыты для всех. Одной из цифровых инфраструктур, где часто встречаются проблемы с безопасностью является Kubernetes. "Облачное" программное обеспечение, развернутое на устаревших центрах обработки данных, требует от конечных пользователей и администраторов своевременного обнаружения и устранения некорректных настроек, в виде предоставление привилегий высокого уровня программам и людям, которым они вовсе не нужны. IBM Study пришла к выводу, что в 95% случаям нарушения безопасности, которые они исследовали, содействовали или были вызваны человеческими ошибками, в том числе и разработчиками программного обеспечения. Остальные же были, главным образом, из-за технической оплошности. В последующих исследованиях, касающихся нарушений безопасности, также приводились аналогичные выводы с цифровыми инструментами всех видов. В Kubernetes привилегии часто предоставляются с помощью ролевых средств управления доступом. Он может ошибочно разрешить административные разрешения для всего кластера, даже если это не требуется. Тот факт, что Kubernetes может включать крупномасштабные и автоматизированные разрешения на инфраструктуру, также создает почву для атаки на контейнеры, приложения и злоупотребления разрешениями. Проблемы также включают множество встроенных функций безопасности, но не все они включены в инструменте по умолчанию. Поскольку Kubernetes способствует быстрому развертыванию и разработке приложений, управление может помешать быстрому развертыванию инфраструктуры. После окончательного развертывания приложений, делая их доступными для пользователей, неверно сделанные конфигурации безопасности увеличивают возможные риски. Стратегии безопасности для облачных инструментов Для защиты облачных средств с помощью контейнеров необходима другая стратегия, отличная от стратегии, используемой для устаревших инфраструктурных систем. С ростом внедрения облачных инструментов существуют два подхода к обеспечению безопасности, главным образом, Kubernetes-ориентированный и контейнерный. В ориентированном на контейнеры подходе к обеспечению безопасности основное внимание уделяется обеспечению безопасности среды выполнения контейнеров и образов. Для управления связью между контейнерами используются такие методы управления, как shim специально написанный интерфейс и встроенные прокси-серверы. С другой стороны, подход, ориентированный на Kubernetes, использует встроенную масштабируемость и гибкость Kubernetes. Она работает на уровнях Kubernetes и продвигает свои принудительные политики. Следовательно, вы должны позволить ему контролировать как вашу инфраструктуру, так и безопасность. Что делает встроенное средство безопасности Kubernetes? Характеристики, которые делают средство безопасности Kubernetes-ориентированным или Kubernetes-native, представляют собой сочетание того, что они выполняют и как. Во-первых, необходимо интегрировать инфраструктуру и рабочие нагрузки с API Kubernetes и оценить уязвимости. Убедитесь, что функции безопасности основаны на ресурсах Kubernetes, включая службы, развертывания, модули и пространства имен. Также необходимо использовать встроенные функции безопасности Kubernetes. Такая глубокая интеграция охватывает все аспекты среды Kubernetes, включая управление уязвимостями, управление конфигурацией, сегментацию сети, реагирование на инциденты, соответствие нормативным требованиям и обнаружение угроз. Почему инструменты, ориентированные на Kubernetes, превосходят контейнеры? Платформы безопасности, ориентированные на Kubernetes, считаются превосходными, если вы работаете с контейнерами. Причину можно сформулировать тремя способами. Во-первых, они обеспечивают лучшую защиту с помощью богатого понимания принципов работы контейнеров и самого Kubernetes. Они также используют декларативные данные для контекстуализации рисков и информирования о них. Во-вторых, платформы безопасности Kubernetes обеспечивают повышенную операционную эффективность, что позволяет быстро обнаруживать угрозы, а также оценивать риски на приоритетном уровне. Он позволяет всем членам вашей команды находиться на одной странице для устранения неполадок и более быстрой работы. В-третьих, ваш операционный риск может быть снижен с помощью встроенных средств управления Kubernetes, облегчающих масштабируемость и адаптируемость. Кроме того, между оркестратором и внешними элементами управления не может возникнуть никакого конфликта. Таким образом, собственные возможности Kubernetes в области безопасности могут лучше защитить контейнерные экосистемы. Если вашим специалистам по безопасности инфраструктуры и DevOps удается использовать весь потенциал этих инструментов, вы можете продолжать обнаруживать угрозы и останавливать их, когда у вас есть время.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59