По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
3-уровневая иерархическая модель Cisco нацелена на построение надежной, масштабируемой и высокопроизводительной сетевой конструкции. Этот высокоэффективный сетевой иерархический подход обеспечивает экономичный, модульный, структурированный и простой метод (обеспечивает несложный и единообразный проект) для удовлетворения существующих и будущих потребностей роста сети. Каждый из уровней имеет свои особенности и функциональность, что еще больше упрощает сети. Что же заставляет нас переходить к использованию 3-уровневневого иерархического подхода, представлены ниже - Масштабируемость (Scalability) - эффективно приспосабливается к будущему росту сети; Простота управления и устранения неполадок - эффективное управление и простота в устранении причины сбоя; Более простая и структурированная фильтрация и принудительное применение политик - проще создавать фильтры/политики и применять их в сети; Избыточность и отказоустойчивость - в сети могут происходить сбои/простои устройств, и она должна продолжать предоставлять услуги с той же производительностью, в случае выхода из строя основного устройства; Высокая производительность - иерархическая архитектура для поддержки высокой пропускной способности и высокой производительности базовой активной инфраструктуры; Модульность - обеспечивает гибкость в проектировании сети и облегчает простое внедрение и устранение неполадок. Уровень ядра (внутренний уровень) | Core layer Этот уровень также называется сетевым магистральным уровнем и отвечает за обеспечение быстрого транспорта между распределительными коммутаторами в пределах кампуса предприятия. Станциями внутреннего уровня являются коммутаторы высокого класса и высокопроизводительные коммутаторы, имеющие модульный форм-фактор. Это полностью резервные устройства, поддерживающие расширенные функции коммутации уровня 3 и протоколы динамической маршрутизации. Основным здесь является сохранение конфигурации как можно более минимальной на уровне ядра. Из-за очень высокой критичности этого слоя, проектирование его требует высокого уровня устойчивости для быстрого и плавного восстановления, после любого события сбоя сети в пределах блока ядра. Ниже приведены основные характеристики внутреннего уровня - Высокая производительность и сквозная коммутация; Обеспечение надежности и отказоустойчивости; Масштабируемый; Избегание интенсивных манипуляций с пакетами ЦП, вызванных безопасностью, инспекцией, классификацией качества обслуживания (QoS) или другими процессами. Вот некоторые модели коммутаторов Cisco, работающих на уровне ядра, являются Catalyst серии 9500/6800/6500 и nexus серии 7000. Распределительный уровень | Distribution layer Распределительный уровень расположен между уровнями доступа и ядра. Основная функция этого уровня - обеспечить маршрутизацию, фильтрацию и WAN-доступ, а также визуализировать связь между уровнями доступа и ядра. Кроме того, коммутаторы уровня распределения могут предоставлять восходящие службы для многих коммутаторов уровня доступа. Уровень распределения гарантирует, что пакеты маршрутизируются между подсетями и Inter/Intra VLAN в среде кампуса. Как стандартный подход, шлюзы по умолчанию для всех VLAN будут коммутаторами уровня распределения. На самом деле серверные устройства не должны быть напрямую подключены к распределительным коммутаторам. Этот подход обеспечивает экономию затрат на один порт за счет высокой плотности портов при менее дорогостоящих коммутаторах уровня доступа. Основные функции распределительного уровня перечислены ниже - Аккумулирование каналов LAN / WAN; Контроль доступа и фильтрация, такие как ACLs и PBR; Маршрутизация между локальными сетями и VLAN, а также между доменами маршрутизации; Избыточность и балансировка нагрузки; Суммирование подсетей и агрегирование маршрутов на границах / к уровню ядра; Управление широковещательным доменом. Устройство уровня распределения действует как демаркационная точка между широковещательными доменами. Основными моделями коммутаторов Cisco, работающих на распределительном уровне, являются Catalyst серии 6800/6500/4500/3850 Уровень доступа | Access layer Этот уровень включает в себя коммутаторы уровня 2 и точки доступа, обеспечивающие подключение к рабочим станциям и серверам. На восходящих линиях связи устройства уровня доступа подключаются к распределительным коммутаторам. Мы можем управлять контролем доступа и политикой, создавать отдельные коллизионные домены и обеспечивать безопасность портов на уровне доступа. Коммутаторы уровня доступа обеспечивают доставку пакетов на конечные устройства. Уровень доступа выполняет ряд функций, в том числе: Коммутация уровня 2; Высокая доступность; Безопасность портов; Классификация и маркировка QoS; Граница доверия; Списки контроля доступа (ACL); Остовное дерево. Основными моделями коммутаторов Cisco, работающих на уровне доступа, являются Catalyst серии 3850/3750/4500/3560/2960.
img
Друг! Приходилось ли тебе сталкиваться с задачами, связанными с настройкой захвата (копирования/зеркалирования) сетевого трафика на сетевом маршрутизаторе? И это не классическая SPAN/RSPAN или даже ERSPAN сессия. Начиная с версий 12.3 Cisco анонсировала фичу под названием IP Traffic Exporter. Настройка IP Traffic Exporter Давайте представим, что у нас есть IP – телефон с адресом 192.168.2.13 и его трафик мы хотим зеркалировать. Условно говоря, процесс настройки мы можем разбить на следующие конфигурационные шаги: Создаем ACL (access control list) для сопоставления трафика, который нас интересует; Создаем профиль для экспортера; Добавляем интерфейс в профиль; Конфигурируем направления для ACL; Назначаем IP Traffic Exporter на интерфейс; Начнем? Создаем ACL: access-list 100 permit 192.168.2.13 Далее, мы создадим профиль экспорта и назовем его EXP_PHONE. Настройку его сделаем в режиме захвата (capture). Внутри настройки профиля, мы укажем длину пакетов в 512 и повесим свежесозданный ACL 100: ip traffic-export profile EXP_PHONE capture outgoing access-list 100 length 512 Как и в других системах, в IOS необходимо применить вашу конфигурацию. Мы прыгаем в режим настройки интерфейса и включаем захват трафика. Сделать это можно следующим образом: interface FastEthernet1 ip traffic-export apply EXP_PHONE size 1024 В команде size мы задаем размер буфера для пакетов. Теперь, нам нужно включить экспортер трафика :) Чтобы сделать это, укажем следующие команды: interface FastEthernet1 merion# traffic-export interface fa1 start //данная команда начинает захват трафика merion# traffic-export interface fa1 stop //данная команда останавливает захват трафика merion# traffic-export interface fa1 copy flash: Capture buffer filename []? merion_dump Capture buffer copy operation to flash may take a while. Continue? [confirm] Copying capture buffer to flash:merion_dump 806 bytes copied. merion# Жара. Мы сделали копирование на flash память маршрутизатора. Помимо прочего ,вы можете указать следующие опции, кроме flash: archive, ftp, http, https, null, nvram, pram, rcp, scp, syslog, system, tftp, tmpsys, xmodem, ymodem. Проверить дамп очень просто – вы можете воспользоваться любой утилитой анализа сетевого трафика, например, Wireshark.
img
Стандарт 802.11 поддерживал только один способ защиты данных, передаваемых по WI-FI, от перехвата- это WEP. В прошлых статьях мы узнали, что WEP является устаревшим средством защиты данных и его использование не рекомендовано. Какие же еще существуют способы шифрования и защиты данных при передаче по Wi-Fi? TKIP В свое время WEP применялся на беспроводном оборудовании клиента и точки доступа, но он был сильно уязвим. На смену WEP пришел протокол целостности временного ключа (Temporal Key Integrity Protocol (TKIP). TKIP добавляет следующие функции безопасности на устаревшем оборудовании и при использовании базового шифрования WEP: MIC: этот эффективный алгоритм шифрования добавляет хэш-значение к каждому кадру в качестве проверки целостности сообщения, чтобы предотвратить подделку. Time stamp: метка времени добавляется в MIC, чтобы предотвратить атаки, которые пытаются повторно использовать или заменить кадры, которые уже были отправлены. MAC-адрес отправителя: MIC также включает MAC-адрес отправителя в качестве доказательства источника кадра. Счетчик последовательностей TKIP: эта функция обеспечивает запись кадров, отправленных по уникальному MAC-адресу, чтобы предотвратить использование повторение кадров в качестве атаки. Алгоритм смешивания ключей: этот алгоритм вычисляет уникальный 128-битный WEP-ключ для каждого кадра. Более длинный вектор инициализации (IV): размер IV удваивается с 24 до 48 бит, что делает практически невозможным перебор всех ключей WEP путем использования метода вычисления brute-force. До 2012 года протокол шифрования TKIP был достаточно безопасным методом защиты данных. Он применялся до тех пор, пока не появился стандарт 802.11i. Злоумышленники не оставили в стороне протокол TKIP. Было создано много алгоритмов атак против TKIP, поэтому его тоже следует избегать, если есть более лучший метод защиты данных в беспроводных сетях. CCMP Протокол Counter/CBC-MAC (CCMP) считается более безопасным, чем TKIP. CCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Cipher Block Chaining Message Authentication Code (CBC-MAC) используется в качестве проверки целостности сообщения (MIC) Расширенный стандарт шифрования (AES)- это текущий алгоритм шифрования, принятый Национальным институтом стандартов и технологий США (NIST) и правительством США и широко используемый во всем мире. Другими словами, AES является открытым, общедоступным и представляет собой самый безопасный метод шифрования на данный момент времени. Для использования протокола защиты CCMP, необходимо убедиться, что устройства и точки доступа поддерживают режим счетчика AES и CBC-MAC на аппаратном уровне. CCMP нельзя использовать на устаревших устройствах, поддерживающих только WEP или TKIP. Как определить, что устройство поддерживает CCMP? Ищите обозначение WPA2. GCMP Протокол Galois/Counter Mode Protocol (GCMP)- это надежный набор шифрования, который является более безопасным и эффективным, чем CCMP. GCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Galois Message Authentication Code (GMAC) используется в качестве проверки целостности сообщения (MIC) GCMP используется в WPA3. WPA, WPA2 и WPA3 На сегодняшний день существует три метода шифрования WPA: WPA, WPA2 и WPA3. Беспроводные технологии тестируются в официальных испытательных лабораториях в соответствии со строгими критериями. Альянс Wi-Fi представил первое поколение сертифицированную WPA (известную просто как WPA, а не WPA1), в то время как поправка IEEE 802.11i для совершенных методов обеспечения безопасности все еще разрабатывалась. WPA была основана на части стандарта 802.11i и включала аутентификацию 802.1x, TKIP и метод динамического управления ключами шифрования. Как только 802.11i был ратифицирован и опубликован, WiFi Alliance включил его в полном объеме в свою сертификацию WPA Version 2 (WPA2). WPA2 основан на превосходных алгоритмах AES CCMP, а не на устаревшем TKIP от WPA. Очевидно, что WPA2 был разработан взамен WPA. В 2018 году Альянс Wi-Fi представил версию WPA3 в качестве замены WPA2, добавив несколько важных и превосходных механизмов безопасности. WPA3 использует более сильное шифрование AES с помощью протокола Galois/Counter Mode Protocol (GCMP). Он также использует защищенные кадры управления (PMF) для защиты кадров управления 802.11 между точкой доступа и клиентами, чтобы предотвратить несанкционированный доступ и нарушение нормальной работы BSS. Обратите внимание, что все три версии WPA поддерживают два режима проверки подлинности клиента: предварительный общий ключ (PSK) или 802.1x, в зависимости от масштаба развертывания. Они также известны как личный режим и режим предприятия, соответственно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59