По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы хотели бы поговорить про Quality of Service (QoS) в VoIP сетях, рассказать что это такое, как это работает, зачем это нужно и как это настраивать. В этой статье мы рассмотрим, какие проблемы мы можем иметь в сети, и как QoS может с ними помочь. Для успешного функционирования VoIP сетей голосовой трафик (voice traffic) должен иметь приоритет над трафиком с данными (data traffic). Quality of Service можно определить как способность сети предоставить лучший или особый сервис для группы пользователей и приложений за счет других пользователей и приложений. Звучит как то, что как раз необходимо для голосового трафика – “лучший” сервис необходим для VoIP не из-за больших требований по пропускной способности (VoIP трафик использует маленькую полосу пропускания, по сравнению с другими приложениями), а из-за требований по задержке. В отличие от трафика с данными, время за которое пакет проходит из одного конца сети в другой имеет значение. Если пакет с данными при прохождении через сеть испытал задержку (delay), то файловый сервер получит файл секундой позже или страничка в браузере будет загружаться чуть дольше, и с точки зрения пользователя не произойдет ничего страшного. Однако если голосовой трафик проходит по сети и испытывает задержку, то голоса начинают перекрываться (например, абонент начинает говорить одновременно с другим абонентом) и продолжать разговор становится невозможно. Чтобы побороть эти проблемы нужно убедиться, что для голосового трафика подходит не только полоса пропускания, но и что голосовой трафик получает первую доступную полосу. Это означает что если бутылочное горлышко (самое узкое место) находится в сети, где маршрутизатор ставит трафик в очередь, то перед тем как его выслать, маршрутизатор будет перемещать голосовой трафик перед трафиком данных, чтобы отправить его в первом доступном интервале. И это как раз задача Quality of Service. QoS, по сути, является не отдельным инструментом, а классом инструментов, направленных на то чтобы дать администратору полный контроль над трафиком внутри сети. Как и когда использовать каждый инструмент QoS зависит от требований к сети от трафика и ее характеристик. Понимание основных проблем Перед тем как применять QoS, нужно разораться с тем, какие проблемы мы пытаемся решить. Рассмотрим основные: Недостаток пропускной способности (Lack of bandwidth) – Множественные потоки голосового трафика и трафика с данными конкурируют за ограниченную полосу пропускания. Задержка (Delay) – Для того чтобы пакет дошел из пункта отправления в пункт назначения требуется какое-то время. Задержка имеет три формы: Фиксированная задержка (Fixed delay) – Значение задержки, которое нельзя изменить. Например, требуется определенное время, чтобы пакет добрался до определенной географической локации. Это значение считается фиксированным и QoS не может повлиять на него. Переменная задержка(Variable delay) – Значения задержки, которые можно изменить. Например, задержка в очереди интерфейса маршрутизатора является переменной, потому что она зависит от того, сколько пакетов находится на данный момент в очереди. На эту задержку можно повлиять поставив голосовые пакеты перед пакетами с данными. Джиттер (Jitter) – Разница задержек между пакетами. Например, первому пакету разговора потребовалось 100 мс чтобы добраться до точки назначения, в то время как второму потребовалось 110 мс. В этой ситуации джиттер составляет 10 мс. Потеря пакетов (Packet loss) – пакеты теряются из-за переполненного или ненадежного сетевого подключения. Очень важно понимать эти проблемы, поскольку они вызывают наложения звука, эхо, потрескивания и разорванные звонки. Механизм QoS предназначен для того, чтобы обеспечить бесперебойную передачу голоса в течение временных перегрузок в сети. Однако это не волшебная палочка, которая сможет решить все проблемы в сети. Например, если в сети есть недостаток пропускной способности, то при добавлении голосовых пакетов не стоит ожидать что QoS сможет все решить – получится что либо приложения с данными будут работать так медленно, что перестанут быть функциональными, либо голосовой трафик будет испытывать проблемы с качеством. Цель QoS – обеспечить постоянную пропускную способность для голосового трафика таким образом, чтобы была низкая постоянная задержка с одного конца сети в другой. Чтобы выполнить это требование необходимо иметь настроенные механизмы QoS в каждой точке сети, где существует перегрузка. Требования к голосовому и видео трафику Разный тип трафика, который используется в сети, имеет разные требования QoS. В отличие от трафика данных, голосовой трафик считается предсказуемым. В то время как трафик данных может значительно увеличиваться при скачивании или передачи большого объема данных, голосовой трафик остается постоянным для каждого звонка поступающего и покидающего сеть. Фактический объем полосы пропускания, требуемый для голоса сильно зависит от используемого кодека. Помимо требований к пропускной способности, голосовой трафик имеет следующие дополнительные требования: Задержка (End-to-end delay) : 150 мс или меньше Джиттер: 30 мс или меньше Потеря пакетов: 1% или меньше Видео трафик имеет такие же требования по задержке, но потребляет большую полосу пропускания. Кроме того ширина полосы пропускания может меняться в зависимости от того, сколько движения происходит в видео (большее количество движений значительно увеличивают необходимую пропускную способность). Требования к трафику данных Невозможно подогнать весь трафик данных под одно требование, потому что каждое отдельное приложение имеет свои QoS требования. Приложения данных можно разделить на несколько категорий: Критически важные приложения (Mission-critical applications) – эти приложения критически важны для организации и требуют выделенной полосы пропускания. Транзакционные приложения (Transactional applications) – эти приложения обычно взаимодействуют с пользователями и требуют быстрого времени отклика. Например, сотрудник техподдержки может использовать приложение базы данных чтобы получать информацию о абоненте на основе ID предыдущих запросов. Низкоприоритетные приложения (Best-effort applications) – эти приложения некритичны или некатегоризированы. Это может быть почта, веб и FTP. “Мусорные ” приложения (Scavenger applications) – это непродуктивные приложения, в которых нет необходимости для работы, но которые поглощают значительные объемы полосы пропускания. Например, это могут быть p2p приложения типа BitTorrent Каждой из этих категорий приложений можно назначить определенный уровень QoS.
img
Функционал модуля CallerID Lookup Sources позволяет устанавливать некие источники для преобразования номерных идентификаторов входящих вызовов CID (caller ID) в имена. После чего, можно привязать входящий маршрут к специальному источнику CID. Таким образом, любой входящий вызов будет сперва проверен на соответствие номера и имени по заданному источнику и, если такое соответствие будет найдено, то вместо длинного номера, на экране Вашего телефона отобразится знакомое имя вызывающего абонента. Можно также создать небольшой список соответствия имен и номеров в модуле Phonebook. /p> Настройка модуля Перейдём к настройке. Для того чтобы попасть в модуль CallerID Lookup Sources, с главной страницы, переходим по следующему пути: Admin -> CallerID Lookup Sources. Обратите внимание на предупреждение, которое открывается при входе в модуль. Процесс поиска имени входящего абонента (name lookup), который запускает данный модуль, может замедлить работу Вашей IP-АТС. По умолчанию, в модуле уже есть один источник – сервис определения CallerID Name - OpenCNAM. Мы не будем подробно рассматривать данный вариант, поскольку, чтобы им воспользоваться, необходимо иметь аккаунт в OpenCNAM. Рассмотрим, какие ещё источники предлагает данный модуль. Для этого нажмите Add CIDLookup Source, откроется окно добавления нового источника В поле Source Description предлагается написать краткое описание нового источника. В поле Source type выбирается тип источника. От того, какой тип будет выбран на данном этапе, будет зависеть то, где система будет искать соответствие CID входящих вызовов. Рассмотрим каждый тип: internal - Для поиска имени используется база astdb, а для её заполнения – модуль Asterisk Phonebook ENUM - Поиск осуществляется по DNS в соответствии с конфигурационным файлом enum.conf HTTP - Выполняет HTTP GET - запрос , передавая номер звонящего в качестве аргумента, чтобы получить правильное имя Рассмотрим каждое из полей, которое необходимо заполнить при выборе данного источника: Host - IP-адрес или доменное имя сервера, куда будет отправлен запрос GET Port - Порт, который прослушивает сервер (по умолчанию - 80) Username - Логин для HTTP аутентификации Password - Пароль для HTTP аутентификации Path - Путь к файлу для запроса GET. Например, /cidlookup.php Query - Строка запроса, специальный токен [NUMBER], в котором будет заменен на номер необходимого абонента. Например, number=[NUMBER]&source=crm. В случае выбора в качестве источника для поиска сервера HTTPS всё остаётся прежним, за исключением порта. По умолчанию используется порт 443. MySQL - Поиск имени звонящего осуществляется по базе MySQL Рассмотрим каждое из полей, которое необходимо заполнить при выборе данного источника: Host - Имя сервера MySQL Database - Имя базы данных MySQL Query - Строка запроса, где специальный токен [NUMBER], будет заменен на номер необходимого абонента. Например, SELECT name FROM phonebook WHERE number LIKE '%[NUMBER]%' Username и Password для авторизации на сервере MySQL Character Set - Набор символов MySQL. Чтобы оставить набор символов по умолчанию, оставьте это поле пустым Пример работы Internal Для демонстрации примера работы данного модуля, создадим тестовый источник - test_internal. Поиск в нем будет осуществляться по базе astdb, которая заполняется при помощи модуля Asterisk Phonebook. Перейдём в данный модуль и создадим тестовую запись. Теперь, необходимо зайти в модуль Inbound Routes и добавить туда правило проверки входящих CID по ранее созданному источнику test_internal. Готово, теперь, если на номер данного входящего маршрута позвонит 456123789, то на экране нашего телефона мы увидим имя John Doe. Если вы хотите подробнее узнать о настройке входящих маршрутов, почитайте соответствующую статью в нашей Базе Знаний.
img
В сегодняшней статье мы поговорим об одном из первых протоколов, получивших широкое применения в сетях VoIP – H.323. Первая реализация H.323 была представлена ITU-T (International Telecommunication Union - Telecommunications) еще в 1996 и предназначалась для использования в видеоконференциях, ограниченных LAN (Local Area Network). Однако, протокол был быстро адаптирован для передачи голосовых данных в других типах IP сетей, таких как WAN (Wide Are Network) и Интернет. H.323 чаще всего называют “протоколом”, хотя на самом деле, это целый стек протоколов, которые объединены одной задачей – поддержание передачи аудио- и видео-данных через сеть с коммутацией пакетов. Протокол H.323 Как видно из данного рисунка передача аудио и видео осуществляется по стекам G.xxx/RTP/UDP/IP и H.xx/RTP/UDP/IP, за статистическую информацию о сессии отвечает RTCP. Протокол H.255 RAS (Registration, Admission, Status) отвечает за взаимодействие оконечных устройств с привратником или контроллером зоны. Протокол H.245 управляет информационными медиа каналами, проводит согласование функциональных возможностей терминалов и осуществляет управление логическими каналами. Процесс установления и завершения звонков через IP сеть осуществляется по средствам протокола H.255.0, сигнальные сообщения которого, позаимствованы у Q.931, использующегося в ISDN. Архитектура H.323 имеет клиент-серверную модель и включает в себя следующие элементы: - Терминал Это основное устройство в системе H.323, обеспечивающее передачу видео- и аудио данных. Терминал обязательно должен поддерживать все протоколы, входящие в стек H.323, для обеспечения сервисов IP телефонии. Выполняется как в виде простого IP телефона, так и в виде сложного устройства с дополнительными функциями. - Шлюз (Gateway) Данный элемент присутствует только тогда, когда необходимо обеспечить сопряжение сети H.323 с сетью другого типа, например ISDN (Integrated Services Digital Network) или PSTN (Public Switched Telephone Network). Стоит отметить, что с помощью шлюзов можно обеспечить взаимодействие H.323 и с сетями мобильной связи третьего поколения (3G), которые используют протокол H.324. - Привратник (Gatekeeper) Также как и шлюз, привратник является опциональным элементом сети H.323. В число функций привратника входят: регистрация терминалов, управление полосой пропускания, трансляция адреса, аутентификация пользователей. Привратник работает в двух режимах: direct routed и gatekeeper routed Наиболее эффективным и широко распространенным является режим direct routed, поскольку в этом режиме оконечные устройства (терминалы), по средствам протокола RAS узнают IP адрес удаленного устройства и соединение происходит напрямую. В режиме же gatekeeper routed соединение всегда происходит через привратник, что конечно же требует от него дополнительных вычислительных мощностей. Совокупность устройств, подключенных к одному привратнику называется зоной (zone), поэтому привратник часто называют контроллером зоны. - Устройство управления конференциями (Multipoint Control Unit) Данное устройство является сервером, в функции которого входит поддержание аудио- и видео- конференций между тремя или более H.323 терминалами. Сервер управляет ресурсами конференции, определяет аудио- и видео-потоки, проводит согласование терминалов по возможности обработки аудио- и видео-данных. Как видно, наличие всех рассмотренных устройств, кроме терминалов, является опциональным. Таким образом, простейшей архитектурой сети H.323 могут являться два, напрямую подключенных терминала, поддерживающих соответствующий стек протоколов. В следующей статье мы более подробно рассмотрим работу некоторых протоколов из стека H.323, а также изучим возможные варианты сценариев установления соединения. Кроме того, мы научимся разбираться в сигнальных сообщениях протокола Q.931, что поможет нам в понимании не только H.323, но и ISDN.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59