По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье мы опишем процесс установки Proxmox Virtual Environment (VE) — систему управления виртуализации с открытым кодом, которая базируется на QEMU/KVM и LXC. Данное решение позволяет вам управлять виртуальными машинами, контейнерами, отказоустойчивыми кластерами, СХД и прочие — все это с помощью веб-интерфейса или CLI. Чтобы было понятнее — Proxmox VE это альтернатива c открытым программным кодом таким продуктам как VMware vSphere, Microsoft Hyper-V или Citrix XenServer. Важное уточнение — согласно лицензии GNU AGPL v3 данное ПО является бесплатным, но, есть возможность купить подписку. Подписка дает следующие преимущества — поддержка от вендора/коммьюнити (в зависимости от выбранного плана), доступ к репозиторию и так далее. Скачать данную платформу можно по следующей ссылке: https://www.proxmox.com/en/downloads Немного о системных требованиях — в идеале, требуется железный сервер, предпочтительно многопроцессорный и 8 Гб памяти для самого Proxmox и остальное — для гостевых машин + 2 сетевых карты. В нашем примере мы установим Proxmox также на виртуальный сервер исключительно для демонстрации процесса установки, и выделили ему 1 Гб оперативной памяти. Список поддерживаемых браузеров включает Chrome, Mozilla Firefox, Safari и IE (актуальные версии). Установка Итак, вы скачали ISO-file по ссылке выше, запустили виртуальную машину и должны увидеть следующее: Кликаем на Install Proxmox VE. После этого появится черный экран с различной информацией, затем (в моем случае, из-за установки на виртуальную машину) появиться предупреждение об отсутствии поддержки виртуализации, и, наконец, откроется окно с установкой и EULA: Читаем, и, надеюсь, соглашаемся с лицензионным соглашением и кликаем Agree: Затем, нам предлагают выбрать диск для установки — выбираем и кликаем Next: Выбираем страну и часовой пояс и кликаем далее: Затем придумываем сложный рутовый пароль и вводим действующий емейл — на него в случае чего будут сыпаться алерты: Указываем настройки сети — выбираем адаптер, указываем хостнейм и так далее. В моем случае я только указал иной хостнейм. Кликаем Next: Начинается процесс установки, который занимает не более 10 минут: Установка заканчивается, и все, что нужно сделать — это нажать Reboot. После перезагрузки скрипт попытается извлечь установочный ISO из виртуального дисковода, и, по каким-то неясным мне причинам, на виртуальной машине Hyper-V скрипт потерпел неудачу и данный шаг пришлось выполнять руками. После перезагрузки вы увидите адрес, по которому нужно зайти в браузере для завершения установки. В данном случае это https://192.168.1.38:8006 Появляется окно логина, с возможностью выбрать язык. Вводите логин root и пароль, который вы указывали при установке: И, наконец, системой можно пользоваться! К примеру, можете кликнуть на вкладку Датацентр слева и увидеть сводку информации по системе: Примеры использования Первым делом попробуем создать виртуальную машину (и да, алерт касаемо отсутствия поддержки виртуализации все еще висит перед глазами, но все равно интересно!). В правом верхнем углу кликаем на кнопку Создать VM: Задаем имя, кликаем далее, указываем всю необходимую информацию и, в конце концов нас ожидает следующее: Как и следовало ожидать, однако… Теперь перейдем к созданию контейнера — для этого кликните в левом верхнем углу на ваш «датацентр», затем на первое «хранилище» - в данном случае это local (merionet). Затем кликните на кнопку Шаблоны и скачайте один из шаблонов — я для этой цели выбрал простой Debian. Начнется процесс скачивания, по завершению которого, можно будет закрыть данное диалоговое окно. Теперь нажимаем в левом верхнем углу Создать CT На первой вкладке указываем его хостнейм и пароль и кликаем Далее. На скриншоте выше видны сетевые настройки, выбранные мной для примера создания контейнера. После чего проверяем настройки и нажимаем Завершить. Начнется процесс создания контейнера, и нужно будет буквально несколько секунд подождать. Затем вы можете кликнуть в левом верхнем углу на него и попробовать поделать различные манипуляции! На этом все, это была статья по установке Proxmox VE на виртуальную машину и максимально базовый обзор его возможностей. В будущем у нас появятся новые статьи на эту тему, с более подробным обзором функционала данного ПО.
img
Международная организации ISO представляет свою уникальную разработку под названием OSI, которой необходимо создать базу для разработки сетевых стандартов. Сетевая модель TCP/IP контролирует процесс межсетевого взаимодействия между компьютерными системами. Несмотря на это, модель OSI включает в себя 7 уровней сетевого взаимодействия, а модель TCP/IP - 4. Межсетевой экран Netfilter определяет протоколы Некоторые из них могут быть заданы только косвенно. Протоколы сетевого уровня и межсетевое экранирование Для формирования сквозной транспортной системы необходимо предоставить сетевой уровень (Network Layer). Он определяет маршрут передачи данных, преобразует логические адреса и имена в физические; в модели OSI (Таблица 2.1) данный уровень получает дейтаграммы, определяет маршрут и логическую адресацию, и направляет пакеты в канальный уровень, при этом сетевой уровень прибавляет свой заголовок. Протокол IP (Internet Protocol) Основным протоколом является IP, который имеет две версии: IPv4 и IPv6. Основные характеристики протокола IPv4: Размер адреса узла - 4 байта В заголовке есть поле TTL Нет гарантии при доставке, что будет правильная последовательность Пакетная передача данных. Если превысится максимальный размер для пакета, тогда обеспечивается его фрагментация. Версия состоящее из четырех бит поле, которое содержит в себе номер версии IP протокола (4 или 6). Длина заголовка - состоящее их 4х бит поле, которое определяет размер заголовка пакета. Тип обслуживания поле, которое состоит из 1 байта; на сегодняшний день не используется. Его заменяют на два других: DSCP, которое делит трафик на классы обслуживания, размер его составляет 6 бит. ECN - поле, состоящее из 2 бит, используется в случае, если есть перегрузка при передаче трафика. Смещение фрагмента используется в случае фрагментации пакета, поле которого равно 13 бит. Должно быть кратно 8. "Время жизни" поле, длиной в 1 байт, значение устанавливает создающий IP-пакет узел сети, поле, состоящее из 1 байта Транспорт поле, размером в один байт. Доп. данные заголовка поле, которое имеет произвольную длину в зависимости от содержимого и используется для спец. задач. Данные выравнивания. Данное поле используется для выравнивания заголовка пакета до 4 байт. IP уникальный адрес. Адреса протокола четвёртой версии имеют длину 4 байта, а шестой 16 байт. IP адреса делятся на классы (A, B, C). Рисунок 2.2. Сети, которые получаются в результате взаимодействия данных классов, различаются допустимым количеством возможных адресов сети. Для классов A, B и C адреса распределяются между идентификатором (номером) сети и идентификатором узла сети Протокол ICMP Протокол сетевого уровня ICMP передает транспортную и диагностическую информацию. Даже если атакующий компьютер посылает множество ICMP сообщений, из-за которых система примет его за 1 из машин. Тип поле, которое содержит в себе идентификатор типа ICMP-сообщения. Оно длиною в 1 байт. Код поле, размером в 1 байт. Включает в себя числовой идентификатор, Internet Header + 64 bits of Original Data Datagram включает в себе IP заголовок и 8 байт данных, которые могут быть частью TCP/UDP заголовка или нести информацию об ошибке. Типы ICMP-сообщений, есть во всех версиях ОС Альт, и они подразделяются на две большие категории. Протоколы транспортного уровня и межсетевое экранирование При ПТУ правильная последовательность прихода данных. Основными протоколами этого уровня являются TCP и UDP. Протокол UDP Основные характеристики протокола UDP приведены ниже. Простую структура, в отличие от TCP Сведения придут неповрежденными, потому что проверяется контрольная сумма Нет гарантии надёжной передачи данных и правильного порядка доставки UDP-пакетов Последнее утверждение нельзя рассматривать как отрицательное свойство UDP. Поддержка протокола не контролирует доставку пакетов, значит передача данных быстрее, в отличие от TCP. UDP-пакеты являются пользовательскими дейтаграммами и имеют точный размер заголовка 8 байт. Адрес порта источника - поле, размером 16 бит, с № порта. Адрес порта пункта назначения - поле, размером 16 бит, в котором есть адрес порта назначения. Длина - размером 16 бит. Оно предназначено для хранения всей длины дейтаграммы пользователя и заголовка данных. Контрольная сумма. Данная ячейка обнаруживается всею пользовательскую дейтаграмму. В UDP контрольная сумма состоит из псевдозаголовока, заголовка и данных, поступивших от прикладного уровня. Псевдозаголовок это часть заголовка IP-пакета, в котором дейтаграмма пользователя закодирована в поля, в которых находятся 0. Передающее устройство может вычисляет итоговую сумму за восемь шагов: Появляется псевдозаголовок в дейтаграмме. В поле КС по итогу ставится 0. Нужно посчитать число байтов. Если четное тогда в поле заполнения мы пишем 1 байт (все нули). Конечный результат - вычисление контрольной суммы и его удаление. Складываются все 16-битовых секций и дополняются 1. Дополнение результата. Данное число и есть контрольная сумма Убирается псевдозаголовка и всех дополнений. Передача UDP-сегмента к IP программному обеспечению для инкапсуляции. Приемник вычисляет контрольную сумму в течение 6 шагов: Прописывается псевдозаголовок к пользовательской дейтаграмме UDP. Если надо, то дополняется заполнение. Все биты делятся на 16-битовые секции. Складывается все 16-битовых секций и дополняются 1. Дополнение результата. Когда результат = нулю, убирается псевдозаголовок и дополнения, и получает UDP-дейтаграмму только семь б. Однако, если программа выдает иной рез., пользовательская дейтаграмма удаляется. Чтобы передать данные - инкапсулируется пакет. В хосте пункта назначения биты декодируются и отправляются к звену данных. Последний использует заголовок для проверки данных, заголовок и окончание убираются, если все правильно, а дейтаграмма передается IP. ПО делает свою проверку. Когда будет все правильно, заголовок убирается, и пользовательская дейтаграмма передается с адресами передатчика и приемника. UDP считает контрольную сумму для проверки . Если и в этот раз все верно, тогда опять заголовок убирается, и прикладные данные передаются процессу. Протокол TCP Транспортный адрес заголовка IP-сегмента равен 6 (Таблица 2.2). Протокол TCP совсем другой, в отличие от протокола UDP. UDP добавляет свой собственный адрес к данным, которые являются дейтаграммой, и прибавляет ее IP для передачи. TCP образует виртуальное соединение между хостами, что разрешает передавать и получать данные как поток байтов. Также добавляется заголовок перед передачей пакету СУ. Порт источника и порт приемника поля размером по 16 бит. В нем есть номер порта службы источника. Номер в последовательности поле размером в 32 бита, содержит в себе номер кадра TCP-пакета в последовательности. Номер подтверждения поле длиной в 32 бита, индикатор успешно принятых предыдущих данных. Смещение данных поле длиной в 4 бита (длина заголовка + смещение расположения данных пакета. Биты управления поле длиной 6 бит, содержащее в себе различные флаги управления. Размер окна поле размером 16 бит, содержит в себе размер данных в байтах, их принимает тот, кто отправил данный пакет. Макс.значение размера окна - 40967байт. Контр. сумма поле размером 16 бит, содержит в себе значение всего TCP-сегмента Указатель поле размером 16 бит, которое используется, когда устанавливается флаг URG. Индикатор количества пакетов особой важности. Опции - поле произв. длины, размер которого зависит от данных находящихся в нём. Чтобы повысить пропускную функцию канала, необходим способ "скользящего окна". Необходимы только поля заголовка TCP-сегмента: "Window". Вместе с данным полем можно отправлять максимальное количество байт данных. Классификация межсетевых экранов Межсетевые экраны не позволяют проникнуть несанкционированным путем, даже если будет использоваться незащищенныеместа, которые есть в протоколах ТСР/IP. Нынешние МЭ управляют потоком сетевого трафика между сетями с различными требованиями к безопасности. Есть несколько типов МЭ. Чтобы их сравнить, нужно с точностью указать все уровни модели OSI, которые он может просчитать. МЭ работают на всех уровнях модели OSI. Пакетные фильтры Изначально сделанный тип МЭ и есть пакетный фильтр. ПФ - часть маршрутизаторов, которые могут быть допущены к разным сист.адресам. ПФ читают информацию заголовков пакетов 3-го и 4-го уровней. ПФ применяется в таких разделай сетевой инфраструктуры, как: пограничные маршрутизаторы; ос; персональные МЭ. Пограничные роутеры Главным приоритетом ПФ является скорость. Также пф ограничивать доступ при DoS-атаки. Поэтому данные пф встроены в большинство роутеров. Преимущества пф: Пф доступен для всех, так как остается в целостности ТСР-соединение. Недостатки пакетных фильтров: Пфпропускают данные с высших уровней МЭ имеет доступ не ко всей информации Большинство пф не аутентифицируют пользователя. Для исходящего и входящего трафика происходит фильтрация. МЭ анализирующие состояние сессии Такие МЭ являются пакетными фильтрами, которые считывают сохраняемый пакет 4-го уровня OSI. Плюсы МЭ четвертого уровня: Информацию могут узнать только установленные соединения Пф доступен для всех, остается в целостности ТСР-соединение Прокси-сервер прикладного уровня Если применять МЭ ПУ, тогда нам не потребуется устройство, чтобы выполнить маршрутизацию. Прокси-сервер, анализирующий точный протокол ПУ, называется агентом прокси. Такой МЭ имеют много преимуществ. Плюсы прокси-сервера ПУ: Прокси требует распознавание пользователя МЭ ПУ проанализирует весь сетевой пакет. Прокси ПУ создают детальные логи. Минусы прокси-сервера ПУ: МЭ использует больше времени при работе с пакетами рикладные прокси работают не со всеми сетевыми приложениями и протоколами Выделенные прокси-серверы Эти прокси-серверы считывают трафик определенного прикладного протокола и не анализируют его полностью. Прокси-серверы нужны для сканирования web и e-mail содержимого: отсеивание Java-приложений; отсеивание управлений ActiveX; отсеивание JavaScript; уничтожение вирусов; блокирование команд, определенных для приложений и пользователя, вместе с блокирование нескольких типов содержимого для точных пользователей.
img
В больших корпоративных сетях могут использоваться несколько протоколов внутренней маршрутизации. Такая практика часто встречается при слиянии двух компаний. Чтобы компьютеры в одном домене маршрутизации (далее просто «домен») видели хосты в другом домене применятся так называемая редистрибуция. Эта функция позволяет маршрутизатору выбрать маршрут, выученный через один протокол маршрутизации, например, EIGRP и добавить в его в список анонсируемых сетей в другой, например, OSPF. Эта операция выполняется на маршрутизаторах, который смотрят в обе сети и называются точкой редистрибуции (Redistirbution Point). Маршрутизаторы, которые занимаются анонсированием сетей из одного домена в другой используют для этого таблицу маршрутизации. Другими словами, если маршрутизатор не найдет путь до какой-то сети в своей таблице, то он не будет анонсировать его в другой домен. Схема сети Для построения отказоустойчивой сети обычно применяются два или более маршрутизатора, которые занимаются перебросом маршрутной информации с одного домена в другой. В такой ситуации может образоваться так называемая петля маршрутизации. Поясним на рисунке: В данном случае пакеты из маршрутизатор 2, чтобы добраться до сети Х, которая находится в том же домене делает круг через RD1 > R1 > RD2 > Subnet X. Это происходит потому, что маршрут, объявленный RD1 в Домен маршрутизации 2, имеет меньшее административное расстояние (Administrative Distance, AD), чем маршруты, объявленные роутерами из того же домена. Далее рассмотрим в каких случаях возможно такое. Как избежать петель? Один из самых лёгких методов для избегания петель маршрутизации это при добавлении маршрутов из одного домена в другой более высокой метрики. В данном случае маршрутизаторы RD1 и RD2 при анонсировании маршрутов, выученных протоколом RIP в домен OSPF, назначают им метрику 500. И наоборот, из домена OSPF в домен RIP маршруты анонсируются с метрикой 5. Второй способ – это административное расстояние. Любой маршрут, который добавляется в таблицу маршрутизации роутера, сопоставляется с административным расстоянием. Если роутер получил несколько маршрутов в одну и ту же сеть с одной и той же длиной префикса, то в таблицу попадают маршруты с меньшим AD. Маршрутизатор не учитывает метрику. Вместе с этим, AD – это локальное значение для каждого роутера и не объявляется соседним маршрутизаторам. В таблице ниже приведены административные расстояния для всех типов маршрутов на роутерах Cisco. Тип маршрутаАдминистративное расстояниеConnected (подключённый)0Static (Статический)1EIGRP Summary route5eBGP (external BGP)20EIGRP (internal)90IGRP100OSPF110IS-IS115RIP120EIGRP (external)170iBGP (internal BGP)200 Настройки AD по умолчанию для протокола EIGRP при анонсировании маршрутов в OSPF и RIP предотвращают образование петель маршрутизации. На рисунке выше подсеть 172.16.35.0/24 анонсируется через RD1 в домен OSPF. Маршрутизатор R2 в свою очередь анонсирует выученную через external OSPF сеть роутеру RD2. Но RD2 уже выучил маршрут до сети 35.0 через EIGRP, у которого административное расстояние равно 90, что меньше чем AD OSFP, которое равно 110. Таким образом RD2 не добавит маршрут, полученный у R2 с AD 110 в таблицу маршрутизации и соответственно не будет редистрибутировать обратно в EIGRP. Таким образом логику работы маршрутизатора RD2 можно сформулировать следующим образом: RD2 считает маршрут, полученный по EIGRP лучшим, так как у него меньшее административное расстояние, и добавляет его в таблицу маршрутизации. RD2 не будет анонсировать маршрут, полученный через OSPF, так как его нет в таблице маршрутизации. В силу своей специфик, протокол EIGRP также предотвращает образование петель маршрутизации при редистрибуции из OSPF и RIP. Как было указано на таблице выше, внешние маршруты в EIGRP имеют административное расстояние равным 170. В данном случае маршрутизатор RD2 выучил два маршрута в сеть 192.168.11.0/24. Один через R2 в домене OSPF с AD равным 110, второй через R1 в домене EIGRP с административным расстоянием равным 170-ти. Действуя по указанной выше логике, RD2 добавит в таблицу маршрутизации сеть 11.0 выученный у роутера R2 предотвращая таким образом образование петли. Если в случае EIGRP-OSPF, EIGRP-RIP нам удалось без особых усилий предотвратить петлю маршрутизации, то в случае OSPF-RIP всё немного сложнее. Так как OSPF для всех типов маршрутов использует один показатель AD – 110, то при редистрибуции между RIP и OSPF избежать петель удается только изменение административного расстояния протоколов маршрутизации. Делается это командой distance. Для изменения показателя AD для внешних маршрутов, в интерфейсе настройки OSPF прописываем команду distance external ad-value. Значение, указанное параметром должно быть больше, чем у RIP (120). Но не редки случаи, когда в сети работают более двух протоколов маршрутизации. В таких случаях значения AD по умолчанию не помогают. На рисунке ниже сеть 172.20.0.0/16 выучена протоколом EIGRP как внешний через RIP с АР (Административное Расстояние) равным 170. В свою очередь RD1 анонсирует данную сеть в домен OSPF с АР равным 110. RD2 же вместо маршрута с АР 170, полученного из домена EIGRP в таблицу добавляет маршрут с АР 110, полученный из домена OSPF. При таком раскладе маршрутизатор R4 получает два маршрута в одну и ту же сеть с одним и тем же АР. И в случае если метрика RD2 лучше, то R4 отправке пакетов в сеть 172.20 будет использовать более длинный путь. Нужно заметить, что это только в том случае, когда домены расположены именно в указанном порядке. В таких случаях применяется настройка административного расстояния в зависимости от маршрута. Как было указано выше, для изменения АР используется команда distance. Эта команда принимает несколько параметров: distance distance ip-adv-router wc-mask [ acl-number-or-name ] В данной команде обязательным параметром является IP соседнего маршрутизатора. Если IP адрес анонсирующего маршрутизатора совпадёт с указанными в команде, то для маршрутов, полученных от этого соседа данный роутер назначит указанный в команде АР. Рассмотрим указанный случай на практике. Детальная топология сети, показанная выше, указана на рисунке, а конфигурацию можете скачать по ссылке ниже: Скачать файлы конфигрурации Для начала просмотрим с каким АР RD1 выучил маршрут до сети 172.20: Как видим, RD1 добавил в таблицу маршрутизации маршрут, выученный через OSPF, вместо EIGRP, так как АР у OSPF меньше. Теперь изменим поведение маршрутизатора и посмотрим, как это повлияет на таблицу маршрутизации. ip access-list standard match-172-20 permit host 172.20.0.0 router ospf 2 distance 171 1.1.1.1 0.0.0.0 match-172-20 P.S. В GNS скорее всего придётся выключить, затем включить интерфейс, смотрящий в OSPF домен, чтобы изменения применились. В реальной сети всё работает правильно. Поясним, что мы написали выше. Со стандартным списком доступа всё понятно. Команде distance параметром задали 171 – административное расстояние. Затем идет router id маршрутизатора, который анонсирует сеть 172.20. В нашем случае это маршрутизатор RD1. Таким образом, OSPF посмотрит полученный LSA и, если там увидит идентификатор маршрутизатора RD1, а также сеть, которая указана разрешённой в списке доступа, то применит этому маршруту расстояние 171. Отметим, что указанную конфигурацию нужно сделать на всех роутерах, которые занимается распределением маршрутов и для всех сетей их третьего домена.
ЛЕТНИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59