По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье мы рассмотрим процессы CICD автоматизации. Разберем роль такого продукта, как Jenkins и его аналогов. Программное обеспечение Jenkins написано на языке программирования Java, по отзывам ИТ сообщества, данный продукт написан очень хорошо. Но самое главное данное программное обеспечение полностью бесплатное. Многие энтузиасты в мире для данного продукта пишут плагины, которые расширяют функционал Jenkins. Рассмотрим 2 ключевых понятия CICD Автоматизации. CI – Continuous Integration. Это DevOps модель, в которой разработчики делают commit кода в репозиторий (обычно используется github или gitlab, для хранения кода) и автоматически запускается build или компиляция этого кода, после этого запускаются автоматические тесты кода: Unit Test, Integration Test, Functionality Test. CD – Continuous Delivery and Deployment. Это DevOps модель, в которой разработчики делают commit кода в репозиторий и автоматически запускается build или компиляция этого кода, после этого запускаются автоматические тесты кода и готовый Artifact (скомпилированный код, например если это Java, то артефактом является var, если это Android приложение, то apk файл) делает деплой в Staging и Production, т.е происходит установка кода в развернутую вашу среду в необходимом контуре. Рассмотрим процесс на примере. Процесс CICD автоматизации Первым шагом в процессе является Commit to Source Control (github, gitlab или bitbucket), система определяет наличие нового кода, срабатывает триггер и автоматически запускается следующий этап BuildCompile - компиляция кода. Система скачивает новый код, например, если код попал в master branch (основную ветку). После получения ответа от сборки, что все прошло успешно, запускается следующий этап тестов. Все тесты пишут все те же программисты, для того, чтобы проверить на сколько корректно отработал код. Весь этот процесс называется Continuous Integration. Это классическая схема содержит 3 этапа, иногда включаются дополнительные шаги, но они не принципиальны. В результате данного процесса мы получаем скомпилированный и протестированный код. Давайте рассмотрим последующие шаги. Следующий шаг мы можем сделать deployment кода. По сути это тот же процесс копирования файлов кода на сервера. Процесс деплоя можно делать в разные места, можно делать в AWS или Azure, можно делать в свое частное облако, развернутое на VMware. Весь процесс с добавочными шагами называется Continuous Delivery and Deployment. Получается следующее: за Source Control – отвечает git. За шаг build и compile будет отвечать Jenkins. Следовательно, Jenkins запустится, когда кто-нибудь сделает комит в систему контроля версий, в основную ветку или не основную, смотря как настроено. Следующим шагом Jenkins выполнит все необходимые тесты, которые подготовили программисты. Следующий шаг Deploy так же запустит Jenkins и скопирует код на необходимые сервера, с помощью скрипта или scp если это Linux сервер. Существуют вариации с использованием Puppet или Ansible если мы делаем Deploy артефакта или конфигурации в целом. Существуют альтернативы Jenkins, например, Bamboo, Circleci, Gitlab CICD, TeamCity. Установка Jenkins Для развертывания Jenkins нам понадобится виртуальная машина на Ubuntu версии 18 или выше. Идем на официальный сайт Jenkins,в разделе Download мы можем увидеть 2 версии. На момент написании статьи актуальная версия Jenkins 2.319.2LTS и во второй колонке мы можем увидеть недельные версии Jenkins 2.333 Как видите дистрибутивы есть практически под все операционные системы. Мы будем использовать стабильную версию под UbuntuDebian. Ознакомимся с требованиями к установке продукта Jenkins. Для инсталляции потребуется минимум 256 МБ RAM, места 1 ГБ, а также на сайте написаны рекомендованные требования, с которыми будет достаточно комфортно работать с продуктом. Так как Jenkins написан на Java, то для запуска и работы потребуется непосредственно установленная на сервере Java. Для начала проверим версию java на сервере. java –version Если сервер свежий или Java не установлена, то операционная система сообщит, что такая команда не найдена и предложить установить Java. Java устанавливается достаточно просто: sudo apt update – oбновляем репозиторий sudo apt search openjdk – ищем необходимый пакет sudo apt install openjdk-11-jdk – запускаем установку java в процессе система попросит подтвердить. Чтобы предупреждение не выскочило мы можем запустить установку с ключем –y По окончанию установки мы опять проверяем версию. Система покажет версию и билд Java. Теперь наш сервер готов к началу установки Jenkins. Добавляем ключ и репозиторий в операционную систему: curl -fsSL https://pkg.jenkins.io/debian-stable/jenkins.io.key | sudo tee /usr/share/keyrings/jenkins-keyring.asc > /dev/null echo deb [signed-by=/usr/share/keyrings/jenkins-keyring.asc] https://pkg.jenkins.io/debian-stable binary/ | sudo tee /etc/apt/sources.list.d/jenkins.list > /dev/null sudo apt-get update – обновляем репозиторий sudo apt-get install Jenkins – инсталлируем непосредственно сам Jenkins Теперь мы можем сделать пост настроечные мероприятия непосредственно в Jenkins. Открываем браузер и переходим на веб интерфейс http://ipaddr:8080, где вместо ipaddr – подставляем IP адрес сервера. В ответ получаем вот такое сообщение - Unlock Jenkins Система просит ввести дополнительный ключ, который был сгенерирован при установке сервера. Найти его достаточно просто достаточно ввести в консоли сервера sudo cat /var/lib/jenkins/secrets/initialAdminPassword Копируем и вставляем в веб форму. После прохождения этой несложной системы безопасности мы можем начать базовую настройку. Система предлагает выбрать стандартную установку или кастомизированную с выбором плагинов (расширений для различного функционала). Если мы выбираем стандартную установку, установятся только те плагины, которые сами разработчики протестировали и выбрали. Если мы выберем установку с выбором, соответственно система даст возможность установить не только стандартные, но и другие плагины. Выбираем стандартную установку и начинается процесс настройки самого Jenkins. Мы можем видать, что ставится git плагин, LDAP для работы с Active Directory, ssh для взаимодействия по протоколу ssh, расширение E-mail для отправки уведомлений и.т.д После непродолжительного ожидания, система предлагает создать суперпользователя с правами администратора в системе. Заполнение не сложное. Если бы мы выбрали другой вариант установки, то система нам предложила бы выбрать самостоятельно нужные плагины. Примерно вот в такой форме. Форма от версии к версии может отличатся. По окончанию заполнения формы, попадаем на экран где нам предлагают проверить URL, т.к эти данные будет Jenkins использовать, как переменные среды. В итоге мы попадаем на главный экран Jenkins. Данный экран – это основной рабочий стол. С помощью плагинов его можно кастомизировать. Так же можно в джобы добавить много разных параметров.
img
Сетевые устройства добавляются в сети для решения целого ряда проблем, включая подключение различных типов носителей и масштабирование сети путем переноса пакетов только туда, куда они должны идти. Однако маршрутизаторы и коммутаторы сами по себе являются сложными устройствами. Сетевые инженеры могут построить целую карьеру, специализируясь на решении лишь небольшого набора проблем, возникающих при передаче пакетов через сетевое устройство. Рисунок 1 используется для обсуждения обзора проблемного пространства. На рисунке 1 есть четыре отдельных шага: Пакет необходимо скопировать с физического носителя в память устройства; это иногда называют синхронизацией пакета по сети. Пакет должен быть обработан, что обычно означает определение правильного исходящего интерфейса и изменение пакета любым необходимым способом. Например, в маршрутизаторе заголовок нижнего уровня удаляется и заменяется новым; в фильтре пакетов с отслеживанием состояния пакет может быть отброшен на основании внутреннего состояния и т.п. Пакет необходимо скопировать из входящего интерфейса в исходящий. Это часто связано с перемещениями по внутренней сети или шине. Некоторые системы пропускают этот шаг, используя один пул памяти как для входящего, так и для исходящего интерфейсов; они называются системами с общей памятью. Пакет необходимо скопировать обратно на исходящий физический носитель; это иногда называют синхронизацией пакета по проводу. Примечание. Небольшие системы, особенно те, которые ориентированы на быструю и последовательную коммутацию пакетов, часто используют общую память для передачи пакетов с одного интерфейса на другой. Время, необходимое для копирования пакета в память, часто превышает скорость, с которой работают интерфейсы; системы с общей памятью избегают этого при копировании пакетов в память. Таким образом, проблемное пространство, обсуждаемоениже, состоит из следующего: Как пакеты, которые необходимо пересылать сетевым устройством, переносятся с входящего на исходящий физический носитель, и как пакеты подвергаются обработке на этом пути? Далее обсуждается часть решения этой проблемы. Физический носитель – Память Первым шагом в обработке пакета через сетевое устройство является копирование пакета с провода в память. Для иллюстрации этого процесса используется рисунок 2. На рисунке 2 представлены два этапа: Шаг 1. Набор микросхем физического носителя (PHY chip) будет копировать каждый временной (или логический) слот с физического носителя, который представляет один бит данных, в ячейку памяти. Эта ячейка памяти фактически отображается в приемное кольцо, которое представляет собой набор ячеек памяти (буфер пакетов), выделенный с единственной целью - прием пакетов, синхронизируемых по сети. Приемное кольцо и вся память буфера пакетов обычно состоят из памяти одного типа, доступной (совместно используемой) всеми коммутирующими компонентами на принимающей стороне линейной карты или устройства. Примечание. Кольцевой буфер используется на основе одного указателя, который увеличивается каждый раз, когда новый пакет вставляется в буфер. Например, в кольце, показанном на рисунке 2, указатель будет начинаться в слоте 1 и увеличиваться через слоты по мере того, как пакеты копируются в кольцевой буфер. Если указатель достигает слота 7 и поступает новый пакет, пакет будет скопирован в слот 1 независимо от того, было ли обработано содержимое слота 1 или нет. При коммутации пакетов наиболее трудоемкой и трудной задачей является копирование пакетов из одного места в другое; этого можно избежать, насколько это возможно, за счет использования указателей. Вместо перемещения пакета в памяти указатель на ячейку памяти передается от процесса к процессу в пределах пути переключения. Шаг 2. Как только пакет синхронизируется в памяти, некоторый локальный процессор прерывается. Во время этого прерывания локальный процессор удалит указатель на буфер пакетов, содержащий пакет, из кольца приема и поместит указатель на пустой буфер пакетов в кольцо приема. Указатель помещается в отдельный список, называемый входной очередью. Обработка пакета Как только пакет окажется во входной очереди, его можно будет обработать. Обработку можно рассматривать как цепочку событий, а не как одно событие. Рисунок 3 иллюстрирует это. Перед коммутацией пакета должна произойти некоторая обработка, например преобразование сетевых адресов, поскольку она изменяет некоторую информацию о пакете, используемом в фактическом процессе коммутации. Другая обработка может происходить после переключения. Коммутация пакета - довольно простая операция: Процесс коммутации ищет адрес назначения Media Access Control (MAC) или физического устройства в таблице пересылки (в коммутаторах это иногда называется таблицей обучения моста или просто таблицей моста). Исходящий интерфейс определяется на основе информации в этой таблице. Пакет перемещается из входной очереди в выходную очередь. Пакет никоим образом не изменяется в процессе коммутации; он копируется из очереди ввода в очередь вывода. Маршрутизация Маршрутизация - более сложный процесс, чем коммутация. Рисунок 4 демонстрирует это. На рисунке 4 пакет начинается во входной очереди. Тогда коммутационный процессор: Удаляет (или игнорирует) заголовок нижнего уровня (например, кадрирование Ethernet в пакете). Эта информация используется для определения того, должен ли маршрутизатор получать пакет, но не используется во время фактического процесса коммутации. Ищет адрес назначения (и, возможно, другую информацию) в таблице пересылки. Таблица пересылки связывает место назначения пакета со next hop пакета. Next hop может быть следующий маршрутизатор на пути к месту назначения или сам пункт назначения. Затем коммутирующий процессор проверяет таблицу interlayer discovery, чтобы определить правильный физический адрес, по которому следует отправить пакет, чтобы доставить пакет на один шаг ближе к месту назначения. Новый заголовок нижнего уровня создается с использованием этого нового адреса назначения нижнего уровня и копируется в пакет. Обычно адрес назначения нижнего уровня кэшируется локально вместе со всем заголовком нижнего уровня. Весь заголовок перезаписывается в процессе, называемом перезапись заголовка MAC. Теперь весь пакет перемещается из очереди ввода в очередь вывода. Почему именно маршрутизация? Поскольку маршрутизация-это более сложный процесс, чем коммутация, то почему именно маршрутизация? Для иллюстрации будет использован рисунок 5. Существует по меньшей мере три конкретных причины для маршрутизации, а не коммутации в сети. На рисунке 5 в качестве примера приведена небольшая сеть: Если канал связи [B,C] является физическим носителем другого типа, чем два канала связи, соединяющиеся с хостами, с различными кодировками, заголовками, адресацией и т. д., то маршрутизация позволит A и D общаться, не беспокоясь об этих различиях в типах каналов связи. Это можно было бы преодолеть в чисто коммутируемой сети с помощью преобразования заголовков, но преобразование заголовков на самом деле не уменьшает количество работы, чем маршрутизация в пути коммутации, поэтому нет особого смысла не маршрутизировать для решения этой проблемы. Другое решение может заключаться в том, чтобы каждый тип физического носителя согласовывал единую адресацию и пакетный формат, но, учитывая постоянное развитие физических носителей и множество различных типов физических носителей, это кажется маловероятным решением. Если бы вся сеть была коммутируемой, то B должен был бы знать полную информацию о достижимости для D и E, в частности, D и E должны были бы знать адреса физического или нижнего уровня для каждого устройства, подключенного к сегменту хоста за пределами C. Это может быть не большой проблемой в малой сети, но в больших сетях с сотнями тысяч узлов или глобальным интернетом это не будет масштабироваться—просто слишком много состояний для управления. Можно агрегировать информацию о достижимости с помощью адресации нижнего уровня, но это сложнее, чем использовать адрес более высокого уровня, назначенный на основе топологической точки присоединения устройства, а не адрес, назначенный на заводе, который однозначно идентифицирует набор микросхем интерфейса. Если D отправляет широковещательную рассылку «всем устройствам в сегменте», A получит широковещательную рассылку, если B и C являются коммутаторами, но не если B и C являются маршрутизаторами. Широковещательные пакеты нельзя исключить, поскольку они являются неотъемлемой частью практически каждого транспортного протокола, но в чисто коммутируемых сетях широковещательные передачи представляют собой очень трудно решаемую проблему масштабирования. Трансляции блокируются (или, скорее, потребляются) на маршрутизаторе. Примечание. В мире коммерческих сетей термины маршрутизация и коммутация часто используются как синонимы. Причина этого в первую очередь в истории маркетинга. Первоначально маршрутизация всегда означала «переключаемая программно», тогда как коммутация всегда означала «переключаемая аппаратно». Когда стали доступны механизмы коммутации пакетов, способные переписывать заголовок MAC на аппаратном уровне, они стали называться «коммутаторами уровня 3», которые в конечном итоге были сокращены до простой коммутации. Например, большинство «коммутаторов» центров обработки данных на самом деле являются маршрутизаторами, поскольку они действительно выполняют перезапись MAC-заголовка для пересылаемых пакетов. Если кто-то называет часть оборудования коммутатором, то лучше всего уточнить, является ли это коммутатором уровня 3 (правильнее - маршрутизатор) или коммутатором уровня 2 (правильнее - коммутатором). Примечание. Термины канал связи и соединение здесь используются как синонимы. Канал связи - это физическое или виртуальное проводное или беспроводное соединение между двумя устройствами. Equal Cost Multipath В некоторых проектах сети сетевые администраторы вводят параллельные каналы между двумя узлами сети. Если предположить, что эти параллельные каналы равны по пропускной способности, задержке и т. д., они считаются равными по стоимости. В нашем случае каналы считаются многопутевыми с равной стоимостью (equal cost multipath - ECMP). В сетевых технологиях в производственных сетях часто встречаются два варианта. Они ведут себя одинаково, но отличаются тем, как каналы группируются и управляются сетевой операционной системой.
img
Иногда, системному администратору необходимо отключить интерфейс, не прибегая к переключению и удалению кабеля. Проще говоря, мы должны иметь возможность решать, какие порты будут включены, а какие отключены. В Cisco используются интерфейсные подкоманды для административного включения и отключения порта: команда shutdown (отключить) и команда no shutdown (включить). Команду no shutdown является неотъемлемой частью при настройке сетевых устройств (чаще всего используют сокращенные команды "shut" и "no shut"). Ниже показан пример 1 отключения интерфейса с помощью команды shutdown. В этом примере на коммутаторе SW-1 имеется рабочий интерфейс F0 / 1. Пользователь подключается к консоли и отключает интерфейс. IOS генерирует сообщение журнала событий каждый раз, когда интерфейс переходит из одного состояния в другое, и сообщения журнала появляются на консоли, как показано в примере: Чтобы включить интерфейс, необходимо выполнить ту же последовательность команд, но вместо команды shutdown использовать команду no shutdown. Прежде чем использовать команды shutdown/no shutdown, используйте команды show, которые отображают состояние интерфейса . Команда show interfaces <номер порта> status выводит одиночное сообщение о состоянии интерфейса. Если интерфейс выключен, то выводится на экран статус интерфейса как "disabled". Команда show interfaces (без ключевого слова status) выводит на экран детализированную информацию о состоянии порта. Информация, выведенная с использованием этой команды, состоит из двух частей. Первая часть отображает фразу "administratively down". Она выделена в сообщении журнала в примере 2. Здесь показаны примеры использования этих команд. Обратите внимание, что в обоих примерах используется параметр F0/1 (сокращение от Fast Ethernet0/1). Этот параметр позволяет выводить сообщения только о состоянии порта F0/1. Удаление настроек с помощью команды no С помощью некоторых команд конфигурации IOS (но не всех) можно вернуться к настройкам по умолчанию, введя команду no <команда>. Что это значит? Давайте рассмотри несколько примеров : Если вы ранее настроили скорость 100 Mb/s на интерфейсе, команда no speed на том же интерфейсе, вернет настройки скорости по умолчанию (включится режим speed auto). Так же и с командной настройки дуплекса: ранее произведенные настройки дуплекса, переводящие порт в режим duplex half или duplex full, можно отменить командой no duplex, введенной на том же интерфейсе. Эта команда возвращает настройки по умолчанию - duplex auto. Если вы произвели настройку описания, используя команду description , то чтобы вернуться к состоянию по умолчанию, удалить описание вообще, используйте команду no description. В примере 3 показан этот процесс. В этом примере порт F0/2 коммутатора SW-1 был предварительно настроен со скоростью 100 Mb/s, режим дуплекса - duplex half, и описанием Link to BUH и отключен (shutdown). Все это отображено в листинге примера. (Для лучшего понимания работы команд, часть листинга была удалена)
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59