По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье мы рассмотрим работу с пакетами и менеджерами пакетов в Red Hat (CentOS) операционных системах. Для работы с пакетами в операционных системах используют yum и rpm. В современной версии используется пакетный менеджер dnf, но он является "форком" от пакетного менеджера yum. Данный пакет разрабатывался в целях решить проблему производительности в первую очередь и в принципе он очень похож, поэтому мы посмотрим в статье на примере классических пакетных менеджеров. В статье мы рассмотрим следующие вопросы: Установка, удаление и обновление пакетов. Поиск пакетов и их зависимостей. Получение полной информации о пакетах. В статье нам понадобится понимание: rpm утилита управления пакетами в Red Hat системах. rpm2cpio разбор пакета на двоичные файлы. yum программа для работы с пакетами в Red Hat системах yumdownloader скачивание пакетов /etc/yum.repos.d./ - перечень репозиториев. Если сравнивать с Ubuntu можно сказать, что вместо dpkg у нас будет rpm, а вместо apt будет yum и дополнительные особенности centos. Открываем консоль. Переходим в режим суперпользователя, команда su. Посмотрим на команду rpm --help. Функционал достаточно большой, все ключи на один экран не помещаются. Есть опции по запросу и проверке пакетов можно найти ключи в секции queryverify. Очень мощная утилита, но для работы все таки удобнее использовать пакетный менеджер yum. Попробуем воспользоваться rpm, чтобы посмотреть его особенности. Лучше всего смотреть на примере. Скачаем программу webmin в виде установочного rpm пакета. Скачали пакет и положили в директорию tmp. Переходим в нее cd /tmp. Далее можно посмотреть наличие файлов ls la. Установим данный пакет. Для установки используем два ключа, ключ i означает install, ключ v означает verbose показывать ход установки. rpm iv webmin-1.955-1.src.rpm Пакет установился. Можно теперь зайти в браузер и начать работу, но цель была посмотреть, как работает rpm. Для того, чтобы удалить пакет необходимо использовать ключ e, который означает erase. Команда будет выглядеть следующим образом: rpm e webmin Название пакета можно полностью не писать, должно работать. Для того, чтобы проверить ключ у скаченного пакета есть ключ K. rpm K webmin-1.955-1.noarch.rpm Как из вывода видим, с пакетом не все в порядке отсутствует ключ для расшифровки подписи. Но данному пакету можно доверять, т. к. он скачан из надежного источника и качали сами. Для того, чтобы проверить состоянии самого пакета есть другой ключ V rpm Vv webmin-1.955-1.noarch.rpm Можно получить информацию о пакете для этого необходимо использовать ключи qi, где query information. rpm qi webmin-1.955-1.noarch.rpm В данном выводе мы можем много информации получить о пакете, Название, Версия, дата сборки и т.д. Возможно, когда-то может возникнуть необходимость посмотреть из чего состоит пакет rpm и разобрать его на составные части. Для этого необходимо использовать небольшую утилиту rpm2cpio. Расшифровывается т.е. rpm переделывается в cpio "copy inputoutput" это и двоичный архиватор, и формат файла. Сейчас пакет rpm должен пере паковаться в формат cpio. Пользоваться следующим образом: rpm2cpio webmin-1.955-1.noarch.rpm > webmin.cpio Как мы видим, получили еще один файл с расширением cpio и вот этот файл в формате родном для других unix систем. И так RPM это такая низкоуровневая утилита, которая позволяет работать с RPM пакетами. YUM Родной и понятный yum, так же имеет файл помощи, как и все другие утилиты. yum help У него меньше опций, меньше возможностей. И есть большое количество команд, проверить, очистить, удалить, получить информацию. Здесь не просто уже ключи, а целые слова и маленькие опции для комфортной работы. Например, мы можем написать: yum install openssh-clients Можно видеть, как он ищет проверяет и говорит, что данный пакет установлен, последняя версия пакета и ему нечего делать. Для удаления мы даем команду: yum remove openssh-clients Он запросит подтверждение на данное действие и если мы подтвердим, то утилита будет удалена. Можно удалить весь ssh: yum remove openssh, но тогда будет предупреждение, что обнаружена одна зависимость от openssh-clients и, если мы подтвердим обе утилиты будут полностью удалены. Т.е это умный пакетный менеджер позволяет работать так, чтобы лишние утилиты не болтались, т.е он сам находит и разрешает зависимости. Еще интересный факт, что при установки пакетный менеджер проверяет зеркала и кэш, что ему позволяет определять, что установлена последняя версия программного обеспечения. В отличии от пакетного менеджера apt (Ubuntu), которому надо сначала обновить кэш apt update, yum автоматически сам обновляет информацию в процессе установки пакетов. Репозиторий yum находится в следующей директории и лежат как отдельные файлы. /etc/yum.repos.d/ Посмотрим базовый репозиторий cat CentOS-Base.repo Написано, что это зеркало для подключения клиентов и проверки статуса обновлений. Тут мы можем увидеть имя репозитория и зеркала где находятся обновления. Есть еще ключи, которые можно проверять, а можно и не проверять. Если мы изменим строчку gpgcheck = 0 то проверка осуществляться не будет. Можно самостоятельно добавить репозиторий, создав файл с расширением repo. И тогда получится свой репозиторий. Для обновления всех пакетов используется команда yum upgrade. Если пакетный менеджер видит обновления, то он предложит сделать выбор установить или нет. Дополнительно есть утилита для просто закачки пакетов без установки yumdownloader. Работает просто. Переходим в нужную директорию и вводим, например, yumdownloader openssh и происходит закачка. И последнее пакетный менеджер умеет искать пакеты. Например, yum search openssh.
img
Перед тем как начать чтение этой статьи, советуем ознакомиться с материалом про расчет пути по алгоритму Bellman - ford. Алгоритм диффузного обновления (Diffusing Update Algorithm -DUAL) - один из двух обсуждаемых здесь алгоритмов, изначально предназначенных для реализации в распределенной сети. Он уникален тем, что также удаляет информацию о достижимости и топологии, содержащуюся в конечном автомате алгоритма. Другие обсуждаемые здесь алгоритмы оставляют удаление информации на усмотрение реализации протокола, а не рассматривают этот аспект работы алгоритма внутри самого алгоритма. К 1993 году Bellman-Ford и Dijkstra были реализованы как распределенные алгоритмы в нескольких протоколах маршрутизации. Опыт, полученный в результате этих ранних реализаций и развертываний, привел ко "второй волне" исследований и размышлений о проблеме маршрутизации в сетях с коммутацией пакетов, что привело к появлению вектора пути и DUAL. Поскольку DUAL разработан как распределенный алгоритм, лучше всего описать его работу в сети. Для этой цели используются рисунки 8 и 9. Чтобы объяснить DUAL, в этом примере будет прослеживаться поток A, изучающего три пункта назначения, а затем обрабатываются изменения в состоянии доступности для этих же пунктов назначения. В первом примере будет рассмотрен случай, когда есть альтернативный путь, но нет downstream neighbor, второй рассмотрит случай, когда есть альтернативный путь и downstream neighbor. На рисунке 8 изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 3. Через C стоимостью 4. A не узнает путь через B, потому что B использует A в качестве своего преемника: A - лучший путь B для достижения D. Поскольку B использует путь через A для достижения D (пункта назначения), он не будет анонсировать маршрут, который он знает о D (через C) к A. B выполнит split horizon своего объявления D на A, чтобы предотвратить образование возможных петель пересылки. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через H помечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость C составляет 3. A знает это, потому что C объявляет маршрут к D со своей локальной метрикой, равной 3. A сохраняет локальную метрику C в своей таблице топологии. Следовательно, A знает локальную стоимость в C и локальную стоимость в A. 3 (стоимость в C) = 3 (стоимость в A), поэтому этот маршрут может быть петлей, следовательно, C не удовлетворяет условию выполнимости. C не помечен как downstream neighbors. Downstream neighbors в DUAL называются возможными преемниками. Предположим, что канал [A, H] не работает. DUAL не полагается на периодические обновления, поэтому A не может просто ждать другого обновления с достоверной информацией. Скорее A должен активно следовать альтернативному пути. Таким образом, это диффузный процесс обнаружения альтернативного пути. Если канал [A, H] не работает, учитывая только D: A проверяет свою локальную таблицу на предмет возможных преемников (Downstream neighbors). Возможных преемников нет, поэтому A должен найти альтернативный путь без петель к D (если он существует). A отправляет запрос каждому соседу, чтобы определить, есть ли какой-либо альтернативный путь без петель к D. В C: Преемником C является E (не A, от которого он получил запрос). Стоимость E ниже, чем стоимость A для D. Следовательно, путь C не является петлей. C отвечает со своей текущей метрикой 3 на A. В B: А - нынешний преемник Б. Посредством запроса B теперь обнаруживает, что его лучший путь к D потерпел неудачу, и он также должен найти альтернативный путь. Обработка B здесь не расписывается, а предоставляется выполнить самостоятельно. B отвечает A, что у него нет альтернативного пути (отвечает бесконечной метрикой). A получает эти ответы: Путь через C - единственный доступный, его стоимость 4. A отмечает путь через C как его преемника. Других путей к D нет. Следовательно, нет подходящего преемника (downstream neighbor). На рисунке 9 пункт назначения (D) был перемещен с H на E. Это будет использоваться во втором примере. В этом примере есть возможный преемник (downstream neighbor). Изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 4. Через C стоимостью 3. A не узнает никакого пути через B: У B есть два пути к D. Через C и A стоимостью 4. В этом случае B использует как A, так и C. B выполнит split horizon свого объявления D на A, потому что A помечен как преемник. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через C отмечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость H составляет 2. 2 (стоимость в H) = 3 (стоимость в A), поэтому этот маршрут не может быть петлей. Следовательно, H удовлетворяет условию выполнимости. H отмечен как возможный преемник (downstream neighbors). Если канал [A, C] не работает, просто рассматривая A: A проверит свою таблицу локальной топологии на предмет возможного преемника. Возможный преемник существует через H. A переключает свою локальную таблицу на H как лучший путь. Распространяющееся обновление не запускалось, поэтому пути не были проверены или пересчитано. Следовательно, допустимое расстояние изменить нельзя. Он остается на 3. A отправляет обновление своим соседям, отмечая, что его стоимость достижения D изменилась с 3 до 4. Как вы можете видеть, обработка, когда существует возможный преемник, намного быстрее и проще, чем без него. В сетях, где был развернут протокол маршрутизации с использованием DUAL (в частности, EIGRP), одной из основных целей проектирования будет ограничение объема любых запросов, генерируемых в случае отсутствия возможного преемника. Область запроса является основным определяющим фактором того, как быстро завершается двойной алгоритм и, следовательно, как быстро сходится сеть. На рисунке 10 показан базовый законченный автомат DUAL. Вещи, входящие в route gets worse (ухудшение маршрута), могут представлять собой: Отказ подключенного канала или соседа Получение обновления для маршрута с более высокой метрикой Получение запроса от текущего преемника Получение нового маршрута от соседа Обнаружен новый сосед, а также маршруты, по которым он может добраться Получение всех запросов, отправленных соседям, когда маршрут ухудшается
img
Кэш DNS может быть поврежден по ряду причин, включая сетевые атаки или вирусы. Когда это происходит, сопоставление IP-адресов становится поврежденным для некоторых популярных веб-сайтов. Например, вместо того, чтобы заходить на сайт www.google.com, ваш браузер может перенаправить вас на IP-адрес вредоносного веб-сайта, который злоумышленник вставил в записи DNS вашего компьютера. Или вы можете получить большое количество ошибок 404. Очистка кеша DNS удаляет всю сохраненную информацию поиска DNS. Затем ваш компьютер получает обновленные данные с DNS-серверов при следующей отправке запроса на поиск. Как очистить кэш DNS в Windows Очистка кеша DNS - это простой и быстрый процесс. Процедура одинакова для почти всех систем Windows. Для примера ниже мы будем использовать Windows 10. Чтобы очистить DNS на вашем компьютере с Windows: Загрузите командную строку от имени администратора. Откройте меню «Пуск» и начните вводить "командная строка" или "cmd", пока не увидите ее в результатах. Введите ipconfig/flushdns, когда командная строка загрузится, и нажмите Enter на клавиатуре. Процесс должен занять всего несколько секунд. Вы должны увидеть подтверждающее сообщение DNS Resolver Cache, когда это будет сделано: База данных кэша DNS на вашем компьютере теперь очищена. Вы должны получить правильное и обновленное сопоставление IP-адресов с DNS-серверов в следующий раз, когда ваш компьютер отправит DNS-запрос. Очистить кэш DNS на Mac Есть несколько разных команд для очистки кеша DNS в OS X и macOS в зависимости от используемой версии. Поскольку процедура одинакова для всех версий, в этой статье подробно описано, как очистить DNS в macOS Mojave (10.14), а затем перечислены команды для других версий в таблице. Сброс DNS на MacOS Mojave (версия 10.14) Чтобы очистить кэш DNS на MacOS Mojave, используйте приложение Terminal: Запустите Terminal.app, используя ваш предпочтительный метод. Вы можете запустить приложение из Приложения -> Утилиты или нажать Ctrl + Space, чтобы запустить Spotlight и выполнить поиск терминала. Введите sudo killall -HUP mDNSResponder и нажмите Enter на клавиатуре. Введите пароль администратора для рассматриваемой учетной записи и нажмите Enter. После окончания процесса не будет никаких оповещений Команды для очистки DNS-кэша в старых версиях macOS и Mac OS X В таблице ниже перечислены команды для очистки кэша DNS в большинстве версий MacOS и Mac OS X. Вы можете скопировать и вставить их прямо из таблицы в свой терминал. Mac OS X или macOS версияКоманда терминалаMojave (version 10.14)High Sierra (version 10.13)Sierra (version 10.12)Mountain Lion (version 10.8)Lion (version 10.7)sudo killall -HUP mDNSRespondeEl Capitan (version 10.11)Mavericks (version 10.9)sudo dscacheutil -flushcache sudo killall -HUP mDNSResponderYosemite (version 10.10)sudo discoveryutil mdnsflushcache sudo discoveryutil udnsflushcachesSnow Leopard (version 10.6)Leopard (version 10.5)sudo dscacheutil -flushcacheTiger (version 10.4)lookupd -flushcache Как очистить кэш DNS в Linux Дистрибутивы Linux немного отличаются от компьютеров с Windows и Mac. Каждый дистрибутив Linux может использовать свою службу DNS. Некоторые дистрибутивы, такие как Ubuntu, вообще не имеют службы DNS по умолчанию. Это зависит от того, какая служба используется в вашем дистрибутиве и включена ли она по умолчанию. Некоторые из них - NCSD (Name Service Caching Daemon), dnsmasq и BIND (Berkely Internet Name Domain). Для каждого дистрибутива вам нужно запустить окно терминала. Нажмите Ctrl + Alt + T на клавиатуре и используйте соответствующую команду, чтобы очистить кэш DNS для службы, работающей в вашей системе Linux. Очистить локальный DNS-кэш NCSD Используйте эту команду для очистки DNS-кэша NCSD на вашем Linux-компьютере: sudo /etc/init.d/nscd restart Введите свой пароль, если это необходимо. Процесс останавливается, а затем запускает службу NCSD в течение нескольких секунд. Очистить локальный DNS-кэш dnsmasq Используйте эту команду для очистки DNS-кэша dnsmasq на вашем Linux-компьютере: sudo /etc/init.d/dnsmasq restart Введите пароль еще раз, если терминал попросит вас. Вы увидите ответ, когда служба останавится и запустится снова. Очистить локальный DNS-кэш BIND Если вы используете BIND для службы DNS, есть несколько команд, которые вы можете использовать для очистки его кеша DNS. Вам может потребоваться ввести пароль для завершения процесса. sudo /etc/init.d/named restart sudo rndc restart sudo rndc exec Примечание: BIND также позволяет указывать конкретные домены при выполнении сброса DNS. Просто добавьте flushname и имя домена в команду sudo rndc. Например:sudo rndc flushname wiki.merionet.ru
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59