По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Управление компьютерной сетью процесс довольно трудоемкий и динамичный. Поэтому разработка инструментов по обслуживанию компьютерных сетей не менее важный процесс, чем, собственно, расширение самих сетей. На сегодняшний момент в распоряжении сетевых администраторов представлены несколько наборов инструментов, позволяющих существенно облегчить развертывание, настройку и обновление конфигурации как небольших локальных сетей, так и достаточно масштабных объединений кластеров, насчитывающих десятки тысяч машин. Самые популярные из них это Salt, Ansible, Puppet и Chef, преимущества и недостатки которого мы и разберем в этой статье. Что же такое Chef? Это система конфигурирования сети, которая "заточена" под кулинарную тематику. Вкратце, система основана на "рецептах" файлах конфигурации, которые администратор объединяет в "кукбуки", или "кулинарные книги" сценарии поведения сети. Эти сценарии помещаются в хранилище, или "книжный шкаф", откуда актуальный набор конфигураций извлекается и устанавливается на клиентские машины в автоматическом режиме. Все операции исполняются с помощью консольного инструмента, который создатели ласково окрестили "шефским ножом". Что же хорошего можно ожидать от томного итальянского шеф-повара? Быстрота развертывания: При правильном прописывании параметров конфигурации, добавление в сеть нового устройства, или даже целого кластера достаточно простая и не требующая долгого времени операция. То, что еще лет пять назад требовало ручных настроек и двух-трех дней работы, с помощью Chef выполняется автоматически в течении считанных минут. Гибкость настроек: Благодаря Bookshelf’ам, Chef позволяет создать несколько сценариев поведения сети, которые позволяют за короткое время переконфигурировать сеть оптимальным образом для выполнения определенного рода задач. Такая возможность актуальна для тех сетей, которые требуют быстрой адаптации под нужды компании. Оперативное перераспределение ресурсной мощности сети один из главных козырей данного решения Доступность: Решение Chef широко распространено и доступно для широкого круга пользователей. Любой интересующийся человек может скачать ознакомительную версию и попробовать писать свои рецепты, и если дело пойдет можно приобрести лицензию и внедрять решения Chef непосредственно в рабочий процесс. Мультиплатформенность: Рецепты Chef можно адаптировать под любую операционную систему, и менять конфигурациии ОС клиентских машин независимо от того, какая ОС на них установлена. А где этот любитель женщин и хорошего вина слабоват? Человеческий фактор: Применение решений Chef требует от оператора внимательности и хорошего знания конфигурирования сети. Если ошибиться в коде и применить некорректные настройки можно столкнуться с рядом проблем, от потери соединения до полной потери данных с выходом удаленного оборудования из строя. Безопасность: Важнейшей задачей при работе с Chef является защищенность рабочей станции. Если не обеспечить защиту сети должным образом, то проникновение в систему злоумышленника и перехват управления системой может привести к серьезному ущербу, особенно в сетях крупных корпораций. Громоздкость: Рецепты Chef зачастую достаточно объемны, и это порождает некоторые сложности в их применении. Каждая строка настроек конфигурации должна быть выверена, и это требует от оператора особого внимания при создании и при проверке рецептов и кукбуков. Прожорливость: Данное решение на текущий момент несколько уступает конкурентам в производительности и потреблении ресурсов рабочей станции. Однако, работы над оптимизацией Chef ведутся непрерывно, поэтому продукт в ближайших версиях обещает быть более оптимизированным и эффективным. Итак, если сравнивать Chef с аналогичными продуктами от других разработчиков (а именно Ansible, Salt и Puppet), то данное решение будет несколько уступать в управляемости, за счет сложности описания рецептов (но это дело привычки), а также по производительности. По заявлениям специалистов Chef Enterprise идеальный инструмент именно для сферы разработки ПО. Работы над оптимизацией программы ведутся, и новые версии обещают быть более эффективными и производительными. Вывод Несмотря на наличие минусов, Chef остается одним из наиболее популярных и востребованных инструментов администратора сети. Данное решение имеет свои достоинства, а недостатки, как очевидно, легко устранимы. Поэтому данная программа имеет множество сторонников применения в самых разных компаниях.
img
Второй метод, который мы можем использовать для настройки адреса, называется EUI-64 (расширенный уникальный идентификатор). Он может быть использован для того, чтобы заставить роутер генерировать свой собственный идентификатор интерфейса вместо того, чтобы вводить его самостоятельно. Роутер будет принимать MAC-адрес своего интерфейса и использовать его в качестве идентификатора интерфейса. Однако MAC-адрес - это 48 бит, а идентификатор интерфейса-64 бит. Что мы будем делать с недостающими частями? В первой части статьи мы рассказывали о стандартной настройке IPv6 на оборудовании Cisco Вот что мы сделаем, чтобы заполнить недостающие биты: Мы берем MAC-адрес и делим его на две части; Мы вставляем "FFFE" между двумя частями, так что бы у нас получилось 64-битное значение; Мы инвертируем 7-й бит идентификатора интерфейса. Например, если мой MAC-адрес 1234.5678.ABCD тогда, после преобразования идентификатор интерфейса получиться: Выше вы видите, как мы разделяем MAC-адрес и помещаем FFFE в середину. "Инвертирование 7-го бита" не является заключительным шагом. Для этого вам нужно преобразовать первые два шестнадцатеричных символа первого байта в двоичный, найти 7-й бит и инвертировать его. Это означает, что если это 0, то вам нужно сделать его 1, а если это 1, то он должен стать 0. 7-й бит представляет собой "универсальный уникальны" бит. По умолчанию в MAC-адресе этот бит всегда будет установлен в 0. При изменении MAC-адреса этот бит должен быть установлен на 1. Обычно люди не меняют MAC-адрес этого роутера, что означает, что EUI-64 будет самостоятельно менять 7-й бит с 0 на 1. Вот как это выглядит: Мы берем первые два шестнадцатеричных символа первого байта, которые являются "12", и преобразуем их обратно в двоичный код. Затем мы инвертируем 7-й бит от 1 до 0 и снова делаем его шестнадцатеричным. Так что на самом деле мой идентификатор интерфейса EUI-64 будет выглядеть следующим образом: Теперь давайте взглянем на конфигурацию EUI-64 на роутере! Я буду использовать 2001:1234:5678:abcd::/64 в качестве префикса: OFF1(config)#interface fastEthernet 0/0 OFF1(config-if)#ipv6 address 2001:1234:5678:abcd::/64 eui-64 В этом случае настроен роутер с префиксом IPv6 и с использованием EUI-64 в конце. Именно так мы можем автоматически генерировать идентификатор интерфейса, используя mac-адрес. Теперь взгляните на IPv6-адрес, который он создал: OFF1#show interfaces fastEthernet 0/0 | include Hardware Hardware is Gt96k FE, address is c200.185c.0000 (bia c200.185c.0000) OFF1#show ipv6 interface fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::C000:18FF:FE5C:0 No Virtual link-local address(es): Global unicast address(es): 2001:1234:5678:ABCD:C000:18FF:FE5C:0, subnet is 2001:1234:5678:ABCD::/64 [EUI] Видите эту часть C000:18FF:FE5C:0? Это MAC-адрес, который разделен на 2, FFFE в середине и "2" в "C200" MAC-адреса были инвертированы, поэтому теперь он отображается как "C000". Когда вы используете EUI-64 на интерфейсе, который не имеет MAC-адреса, то он выберет MAC-адрес самого низкого нумерованного интерфейса на роутере. При использовании EUI-64 вы должны ввести 64-битный префикс, а не полный 128-битный IPv6 адрес. Если вы сделаете это, вы не получите ошибку, но Cisco IOS будет только сохранять 64-битный префикс, и в любом случае сгенерирует идентификатор интерфейса. Скорее всего вы, вероятно, не будете использовать EUI-64 на роутере для настройки интерфейса, но это очень полезный метод для обычных хостов, таких как компьютеры windows, linux или mac. Вы, возможно, настроите IPv6-адрес вручную на интерфейсе вашего роутера или используете метод автоконфигурации, такой как DHCP или SLAAC. Когда вы внимательно посмотрите на выходные данные show ipv6 interface, вы можете заметить, что там есть еще один IPv6-адрес: OFF1#show ipv6 interface fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::C000:18FF:FE5C:0 Кстати, про теоретические основы IPv6 можно изучить тут Этот адрес называется локальным адресом связи (link-local address), и он имеет некоторые специальные цели для IPv6. Каждое устройство с включенным IPv6 автоматически генерирует локальный адрес связи. Эти адреса являются одноадресными, не могут быть маршрутизированы и используются только в пределах подсети, поэтому они называются "link-local". Некоторые протоколы используют локальные адреса связи вместо глобальных одноадресных адресов, хорошим примером является NDP (Neighbour Discovery Protocol), который используется для обнаружения MAC-адресов других устройств IPv6 в подсети (NDP заменяет ARP для IPv4). Протоколы маршрутизации также используют эти локальные адреса связи для установления соседних областей, а также в качестве следующего перехода для маршрутов. Мы увидим это, когда будем говорить о маршрутизации IPv6. Адресное пространство FE80:: / 10 было зарезервировано для link-local, которые охватывают FE8, FE9, FEA и FEB. Однако RFC, описывающий link-local, утверждает, что следующие 54 бита должны быть нулями, поэтому link-local всегда будут выглядеть так: link-local всегда будет начинаться с FE80:0000:0000:0000, а ID можно настроить с помощью различных методов. Роутеры Cisco будут использовать EUI-64 для создания идентификатора интерфейса, в то время как другие операционные системы, такие как Microsoft, используют случайный метод для создания идентификатора интерфейса. В приведенном ниже примере вы можете видеть, что EUI-64 был использован для создания link-local: OFF1#show interfaces fastEthernet 0/0 | include Hardware Hardware is Gt96k FE, address is c200.185c.0000 (bia c200.185c.0000) OFF1#show ipv6 interface fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::C000:18FF:FE5C:0 Первая часть-это FE80:: и вторая часть - это созданный идентификатор интерфейса EUI-64: C000:18FF:FE5C:0 Когда вы настраиваете IPv6-адрес на интерфейсе (глобальный одноадресный или уникальный локальный) или когда вы включаете IPv6 на интерфейсе, вы можете сделать это следующим образом: OFF1(config)#interface fa0/0 OFF1(config-if)#ipv6 enable Использование команды ipv6 enable роутеру создать link-local адрес. OFF1#show ipv6 int fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::C000:15FF:FE94:0 По умолчанию Cisco IOS будет использовать EUI-64 для создания link-local адреса, но вы также можете настроить его самостоятельно. Просто убедитесь, что адрес начинается с FE80:: / 10 (FE8, FE9, FEA или FEB). Вот как вы можете настроить link-local адрес: OFF1(config-if)#ipv6 address FE90:1234:5678:ABCD::1 link-local Просто используйте ключевое слово link-local, чтобы сообщить роутеру, что это должен быть адрес link-local. Давайте проверим это: OFF1#show ipv6 int fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE90:1234:5678:ABCD::1 Помимо link-local адресов существует еще один тип адресации, который мы должны обсудить, и это multicast. Я надеюсь, вы обладаете званиями об одноадресных и широковещательных доменах. Когда хост отправляет широковещательную передачу, все остальные устройства в подсети получат ее независимо от того, хотят они этого или нет. Отправка широковещательных сообщений очень неэффективна, и они были удалены из IPv6. Многоадресная рассылка также используется для отправки чего-то с одного хоста на несколько приемников, но разница заключается в том, что многоадресный трафик заканчивается только на хостах, которые хотят его получить. Каждый, кто прослушивает определенный адрес многоадресной рассылки, получит эти пакеты. Это просто как радиостанция, если вы хотите слушать...вы должны настроиться на нужную частоту. IPv6 использует многоадресную рассылку по многим причинам. Узлы IPv6, которые хотят отправить что-то всем узлам, работающим под управлением IPv6, могут использовать адрес многоадресной рассылки FF02::1. Все, у кого включен IPv6, слушают этот адрес. Когда роутер IPv6 хочет отправить что-то всем другим роутерам IPv6 (но не хостам!) он может отправить его в FF02:: 2. Протоколы маршрутизации также используют многоадресные адреса. Например, EIGRP уже использует виде FF02::A и OSPF использует виде FF02::5 и виде FF02::6. Многоадресный трафик маршрутизируется, но часть трафика должна оставаться в пределах подсети. Если это так, то эти адреса будут иметь link-local область, и они не будут перенаправляться роутерами из одной подсети в другую. Диапазон FF00:: / 8 был зарезервирован для многоадресной рассылки IPv6, в то время как диапазон FF02::/16 зарезервирован для многоадресных адресов link-local области. На роутере Cisco вы можете видеть по интерфейсу, к которому многоадресные адреса роутер прослушивает: OFF1#show ipv6 int fa0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE90:1234:5678:ABCD::1 No Virtual link-local address(es): No global unicast address is configured Joined group address(es): FF02::1 FF02::2 FF02::1:FF00:1 Этот конкретный роутер прослушивает адреса многоадресной рассылки "все хосты IPv6" и "все роутеры IPv6". Как только вы настроите OSPF или EIGRP для IPv6, вы заметите, что интерфейс присоединится к соответствующим адресам многоадресной рассылки. Третий адрес, который у нас есть (FF02::1:FF00:1), называется адресом многоадресной рассылки запрошенного узла. Он используется для обнаружения соседей. Многоадресный адрес запрашиваемого узла основан на одноадресном IPv6-адресе хоста, а если быть более точным...последние шесть шестнадцатеричных символов одноадресного адреса. Все хосты, имеющие одинаковые 6 шестнадцатеричных символов в своем одноадресном IPv6-адресе, в конечном итоге получат один и тот же адрес запрашиваемого узла. Когда вы отправляете что-то на этот адрес запрашиваемого узла, все хосты с одним и тем же адресом получат пакеты. Это что-то вроде многоадресного адреса "все хосты IPv6", но на этот раз у нас есть отдельная комната, где единственными членами являются VIP-персоны, которые разделяют одни и те же последние 6 шестнадцатеричных символов. Все адреса запрашиваемых узлов начинаются с FF02::1:FF, поэтому они выглядят следующим образом: Мой маршрутизатор имеет запрошенный адрес узла FF02:: 1:FF00:1, а link-local адрес -FE90:1234:5678: ABCD:: 1. Когда мы записываем link-local адрес полностью, это выглядит так: FE90:1234:5678:ABCD:0000:0000:0000:0001 Возьмите последние 6 шестнадцатеричных символов из этого адреса: 00:0001 И поместите их за префиксом адреса запрашиваемого узла, чтобы получить полный адрес запрашиваемого узла: FF02:0000:0000:0000:0000:0001:FF00:0001 Мы можем удалить некоторые нули, чтобы сделать его короче, и это будет выглядеть так: FF02::1:FF00:1
img
Cisco Discovery Protocol (CDP) – разработка компании Cisco Systems, которая позволяет коммутаторам Cisco обнаруживать устройства, подключенные к их интерфейсам. По умолчанию, CDP активирован на Cisco коммутаторах. Так же, CDP активирован по умолчанию на IP - телефонах Cisco. Протокол CDP особенно полезен для VoIP (Voice over IP), так как он позволяет коммутатору обнаружить IP – телефон и установить оптимальные для взаимодействия параметры. Параметры команды show cdp neighbors detail приведены на картинке ниже. Установление метки VLAN Коммутатор, к которому подключен IP – телефон, по протоколу CDP устанавливает соединение, которое позволяет телефону отправлять VoIP пакеты в отдельном VLAN (голосовом, то есть только для телефонов). Это позволяет изолировать трафик IP – телефонов от трафика сети Интернет. Установление параметров CoS Благодаря протоколу CDP, коммутатор может установить тип устройства и определить метку CoS (Class of Service) для него. Значение по умолчанию это CoS нулевого уровня, а максимальное значение CoS уровня 5. Подключение компьютера в Cisco IP – телефон В рамках удобства офисного пространства, существует возможность подключения компьютера пользователя напрямую в PC порт IP – телефона. Сам IP – телефон включается в порт доступа (access port) коммутатора. Сетевой интерфейс компьютера функционирует в специальном VLAN, предназначенном для сети интернет. По умолчанию, все полученные от компьютера пакеты, Cisco IP Phone маркирует меткой CoS 0 - эта опция может быть отдельно настроена в настройках телефона, а так же в конфигурации самого коммутатора. Телефон Cisco взаимодействует с коммутатором по протоколу CDP, чтобы установить параметры доверия (trusting/nontrusting) трафику, получаемому с PC порта телефона: Если порт маркируется как надежный (trusting), то Cisco IP телефон доверяет меткам приоритета и CoS, которые компьютер устанавливает самостоятельно. Например, если компьютер, подключенный к PC – порту телефонного аппарата присваивает уровень CoS равный трем, а данный порт помечен как надежный, то данная метка будет оставлена без изменений. Ненадежный (nontrusting) PC – порт телефона, не доверяет меткам компьютера. Другими словами, метки компьютера, подключенного в этот порт, будут игнорироваться. Например, если компьютер отправляет параметр CoS 3, то IP – телефон сбросит это значение на CoS 0, то есть значение по умолчанию.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59