По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Эта серия статей подробно объясняет основные понятия, принципы и операции протокола маршрутизации RIP с примерами. Узнайте, как работает RIP (Routing Information Protocol) и как обновляет таблицу маршрутизации из широковещательного сообщения шаг за шагом. Маршрутизаторы используют таблицу маршрутизации для принятия решения о переадресации. Таблица маршрутизации содержит информацию о сетевых путях. Сетевой путь - это простой фрагмент информации, который говорит, какая сеть подключена к какому интерфейсу маршрутизатора. Всякий раз, когда маршрутизатор получает пакет данных, он ищет в таблице маршрутизации адрес назначения. Если маршрутизатор найдет запись сетевого пути для адреса назначения, он переадресует пакет из связанного интерфейса. Если маршрутизатор не найдет никакой записи для адреса назначения, он отбросит пакет. Существует два способа обновления таблицы маршрутизации: статический и динамический. В статическом методе мы должны обновить его вручную. В динамическом методе мы можем использовать протокол маршрутизации, который будет обновлять его автоматически. RIP - это самый простой протокол маршрутизации. В этой статье мы узнаем, как RIP обновляет таблицу маршрутизации. В протоколе RIP маршрутизаторы узнают о сетях назначения от соседних маршрутизаторов через процесс совместного использования. Маршрутизаторы, работающие по протоколу RIP, периодически транслируют настроенные сети со всех портов. Список маршрутизаторов обновит их таблицу маршрутизации на основе этой информации. Давайте посмотрим, как работает процесс RIP шаг за шагом. Следующий рисунок иллюстрирует простую сеть, работающую по протоколу маршрутизации RIP. Когда мы запускаем эту сеть, маршрутизаторы знают только о непосредственно подключенной сети. OFF1 знает, что сеть 10.0.0.0/8 подключена к порту F0/1, а сеть 192.168.1.252/30 подключена к порту S0/0. OFF2 знает, что сеть 192.168.1.252/30 подключена к порту S0/0, а сеть 192.168.1.248/30 подключена к порту S0/1. OFF3 знает, что сеть 20.0.0.0/8 подключена к порту F0/1, а сеть 192.168.1.248/30 подключена к порту S0/0. В отличие от статической маршрутизации, где мы должны настроить все маршруты вручную, в динамической маршрутизации все, что нам нужно сделать, это просто сообщить протоколу маршрутизации, какой маршрут мы хотим объявить. А остальное будет сделано автоматически, запустив динамический протокол. В нашей сети мы используем протокол маршрутизации RIP, поэтому он будет обрабатываться RIP. Иногда RIP также известен как маршрутизация прослушки. Потому что в этом протоколе маршрутизации маршрутизаторы изучают информацию о маршрутизации от непосредственно подключенных соседей, а эти соседи учатся от других соседних маршрутизаторов. Протокол RIP будет совместно использовать настроенные маршруты в сети через широковещательные передачи. Эти широковещательные передачи называются обновлениями маршрутизации. Прослушивающие маршрутизаторы обновят свою таблицу маршрутизации на основе этих обновлений. OFF1 будет слушать трансляцию из OFF2. От OFF2, он узнает об одной новой сети 192.168.1.248/30 OFF2 будет слушать две передачи с OFF1 и OFF3. Из OFF1 он узнает о 10.0.0.0/8 и от OFF3 он узнает о сети 20.0.0.0/8. OFF3 будет слушать трансляцию из OFF2. От OFF2 он узнает о сети 192.168.1.252. Маршрутизатор выполняет несколько измерений, обрабатывая и помещая новую информацию о маршруте в таблицу маршрутизации. Мы объясним их позже в этой статье. Если маршрутизатор обнаружит новый маршрут в обновлении, он поместит его в таблицу маршрутизации. Через 30 секунд (интервал времени по умолчанию между двумя обновлениями маршрутизации) все маршрутизаторы снова будут транслировать свои таблицы маршрутизации с обновленной информацией. В данный момент времени: OFF1 будет транслироваться для 10.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF2 будет транслировать для 10.0.0.0/8, 20.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF3 будет транслироваться для 20.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF1 узнает о сети 20.0.0.0/8 из трансляции OFF2. У OFF2 нет ничего, чтобы обновить из трансляции OFF1 и OFF2. OFF3 узнает о сети 10.0.0.0/8 из трансляции OFF2. Через 30 секунд маршрутизатор снова будет транслировать новую информацию о маршрутизации. На этот раз маршрутизаторам нечего обновлять. Эта стадия называется конвергенцией. Конвергенция Конвергенция - это термин, который относится к времени, затраченному всеми маршрутизаторами на понимание текущей топологии сети. Метрика протокола маршрутизации RIP У нас может быть два или более путей для целевой сети. В этой ситуации RIP использует измерение, называемое метрикой, чтобы определить наилучший путь для целевой сети. RIP использует подсчет прыжков как метрику. Прыжки - это количество маршрутизаторов, необходимое для достижения целевой сети. Например, в приведенной выше сети OFF1 есть два маршрута для достижения сети 20.0.0.0/8. Маршрут 1: - через OFF3 [на интерфейсе S0/1]. С прыжком - один. Маршрут 2: - через OFF2-OFF3 [на интерфейсе S0/0]. С прыжком - два. Итак, по какому маршруту OFF1 доберется до места назначения? Маршрут 1 имеет один прыжок, в то время как маршрут 2 имеет два прыжка. Маршрут 1 имеет меньшее количество переходов, поэтому он будет помещен в таблицу маршрутизации. Резюме Протокол маршрутизации RIP использует локальную широковещательную передачу для обмена информацией о маршрутизации. RIP транслирует обновления маршрутизации каждые 30 секунд, независимо от того, изменилось что-то в сети или нет. По истечении 30 секунд маршрутизаторы, работающие по протоколу RIP, будут транслировать информацию о своей маршрутизации на любые устройства, подключенные к их интерфейсам. Перед отправкой обновлений маршрутизации маршрутизатор добавляет метрику инициализации ко всем маршрутам, которые он имеет, и увеличивает метрику входящих маршрутов в объявлениях, чтобы маршрутизатор листинга мог узнать, как далеко находится сеть назначения. При отправке широковещательных передач RIP не заботится о том, кто слушает эти широковещательные обновления или нет. После отправки широковещательного сообщения RIP не заботится о том, получили ли соседи эти широковещательные обновления или нет. Когда маршрутизатор получает обновления маршрутизации, он сравнивает их с маршрутами, которые уже есть в его таблице маршрутизации. Если обновление содержит информацию о маршруте, которая недоступна в его таблице маршрутизации, маршрутизатор будет рассматривать этот маршрут как новый маршрут. Маршрутизатор добавит все новые маршруты в таблицу маршрутизации перед обновлением существующего. Если обновление содержит лучшую информацию для любого существующего маршрута, маршрутизатор заменит старую запись новым маршрутом. Если обновление содержит худшую информацию для любого существующего маршрута, маршрутизатор проигнорирует ее. Если обновление содержит точно такую же информацию о любом существующем маршруте, маршрутизатор сбросит таймер для этой записи в таблице маршрутизации Далее, почитайте нашу статью о функциях и терминологии RIP.
img
Запись телефонных разговоров на IP – АТС Asterisk является безусловно важной «фичей» для любой организации. С другой стороны, с ростом количества записей уменьшается память на дисках. Рано или поздно, перед организацией встает вопрос об удалении старых файлов, для освобождения места. Мы разработали PHP скрипт, который автоматически удаляет записи разговоров (.wav) и данные в базе данных по этим звонкам старше определенного количества дней. Чтобы адаптировать его под себя, вам нужно просто указать максимальное количество дней для хранения записей. Скрипт автоматического удаления Сам скрипт написан на PHP и представляет собой 23 строчки кода. Основная переменная в скрипте - days. Укажите в ней количество дней, которое вы планируете хранить записи: <?php $days = 180; //записи, которые старше 180 дней будут удалены. Укажите здесь количество дней для удаления; $hostname = "localhost"; //если скрипт выполняется на том же сервере, что и IP - АТС Asterisk, то оставьте здесь localhost. В противном случае укажите IP - адрес; $username = "delete"; //логин для подключения к базе данных asteriskcdrdb $password = "333jIje45"; //пароль для подключения к базе данных asteriskcdrdb $dbName = "asteriskcdrdb"; $file = '/home/admin/log_mail.txt'; $cdate = date('Y-m-d H:i:s', strtotime('-'.$days.' days')); //определяем максимальную дату звонка. Все звонки старше этой даты, будут удалены; $adate = date('Y-m-d H:i:s'); //текущая дата для записи в лог – файл; /* создать соединение */ mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); /* удаляем информацию о записях в таблице cdr*/ $query = "DELETE from cdr WHERE calldate < '$cdate';"; $res=mysql_query($query) or die(mysql_error()); /* Как много нашлось строк */ $number = mysql_affected_rows(); /* удаляем сами аудио - записи разговоров */ echo exec('find /var/spool/asterisk/monitor/ -type f -mtime +'.$days.' -exec rm -rf {} ;'); $current = "DELETE :: $adate :: $number records were deleted from CDR "; file_put_contents($file, $current, FILE_APPEND | LOCK_EX); //записываем запись в лог файл; ?> Скачать скрипт удаления записей Загруженный скрипт сохраните в формате .php. Адаптация скрипта на вашей АТС Первое, что необходимо сделать, это создать пользователя для доступа к базе данных, который будет иметь права на удаление. Для этого, даем следующие команды: [root@asterisk]# mysql mysql>CREATE USER 'delete'@'localhost' IDENTIFIED BY '333jIje45'; Теперь предоставляем необходимые права: mysql> GRANT DELETE, SELECT ON asteriskcdrdb.cdr TO 'delete'; Готово. Теперь скрипт необходимо запланировать через cron для регулярного выполнения. Даем команду crontab -e и добавляем следующую строку: */2 10-18 * * 1-5 /usr/bin/php /home/deletecdr.php В данном примере, наш скрипт будет отрабатывать каждые 2 минуты с понедельника по пятницу, с 10:00 до 18:00. Здесь, /home/deletecdr.php - полный путь к скрипту. Сохраняем изменения и наслаждаемся спокойствием за дисковое пространство :)
img
Данное волокно состоит из стекла или пластика и позволяет передавать сигналы в виде света. Чтобы понять, как передаются сигналы в оптическом волокне, нам сначала необходимо разобраться со способами передачи лучей света. Способы распространения сигналов в оптоволокне Современная технология передачи данных поддерживает два метода распространения света в оптических каналах. Для каждого метода требуются волокна с различными физическими характеристиками. Существуют: Многомодовый Одномодовый Многомодовый режим может быть реализован в двух формах: Step- Index Graded- Index Далее более подробно разберем каждый из двух методов. Многомодовый Это название произошло из-за волокна, по которому могут передаваться большое количество световых лучей, двигающихся через сердечник в различных направлениях. Эти лучи перемещаются внутри кабеля в зависимости от структуры сердечника. Многомодовый Step-Index В многомодовом волокне Step-Index от центра к краям плотность ядра остается постоянной. Луч света проходит через эту постоянную плотность по прямой линии, пока не достигнет границы раздела ядра и оболочки. На границе раздела происходит резкое изменение плотности на более низкую, что изменяет угол преломления луча. Внезапность этого изменения обозначается термином Step-index. На рисунке ниже показаны различные лучи, проходящие через многомодовое Step-Index волокно. Часть лучей в середине проходят по прямым линиям через ядро и достигают цели, не отражаясь и не преломляясь. Часть же лучей ударяются о поверхность раздела ядра и оболочки под углом, меньшим критического угла преломления. Эти лучи проникают сквозь оболочку и пропадают. Тем не менее, другие ударяются о край ядра под углами, превышающими критический угол, и отражаются в ядро и с другой стороны, отражаясь назад и вперед по каналу, пока не достигнут цели. Многомодовый Graded-Index Второй тип волокна называется многомодовым Graded-Index. Это волокно уменьшает искажение сигнала через кабель. Слово индекс здесь относится к индексу преломления, а индекс преломления связан с плотностью. Таким образом, волокно с Graded-Index -это волокно с различной плотностью. Плотность самая высокая в центре ядра и постепенно уменьшается до самого низа на краю. На этом рисунке показано влияние этой переменной плотности на распространение световых лучей. Одномодовый Одномодовое волокно использует режим step-index и сильно зависит от источника света, который использует ограниченный угол преломления света, близкий к горизонтали. Волокно изготавливается с гораздо меньшим диаметром, чем у многомодовых волокон, и с существенно меньшей плотностью (показателем преломления). Уменьшение плотности световых пучков приводит к критическому углу преломления, который приближается к 90 градусам, так чтобы лучи распространялись почти горизонтально. В этом случае распространение различных лучей осуществляется практически одинаково и задержки незначительны. Все лучи поступают на сторону приемника вместе и могут быть рекомбинированы без искажений сигнала. Преимущества оптоволоконного кабеля Помехоустойчивость: для передачи данных не используется электрический сигнал, а используется свет. Электромагнитные излучения не создают помех для передачи данных. Единственная возможная помеха-это внешний свет, который изолируется внешней оболочкой. Меньшее затухание сигнала: расстояние волоконно-оптической передачи значительно больше по сравнению с другими управляемыми средами. Сигнал может проходить на многие километры, не требуя регенерации. Более высокая пропускная способность: по сравнению с коаксиальным кабелем или витой парой, волоконно-оптический кабель может поддерживать значительно более высокую пропускную способность, что увеличивает скорость передачи данных. Существует ограничение на скорость передачи данных и использование полосы пропускания по волоконно-оптическому кабелю, причем не носителем, а доступной технологией передачи и приема данных. Недостатки оптоволоконного кабеля Стоимость: этот кабель дорогой, так как любые нарушения технологии изготовления сердечника могут ослабить передаваемый сигнал. Кроме того, лазерный источник света может стоить огромных денег, по сравнению с сотнями генераторов электрических сигналов. Установка / техническое обслуживание: при наличии шероховатости или трещин в сердечнике оптического кабеля приведет к рассеиванию и затуханию сигнала. Все соединения должны быть идеально сварены. Соединения же медных кабелей могут быть сделаны путем резки и обжима с использованием относительно простых инструментов. Хрупкость: оптоволокно может быть легко сломано, чем медный провод, что делает его не транспортабельным, то есть там, где требуется постоянное перемещение оборудования его использовать нельзя или по крайней мере не удобно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59