По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье расскажем про полезные инструменты, которые стали доступны в 4 версии графического интерфейса Elastix. Модуль, который управляет всеми этими инструментами так и называется Tools. Итак, для того, чтобы попасть в модуль нужно проделать следующий путь PBX → Tools, как показано ниже: Как видно, нам доступно 5 функциональных инструментов: Asterisk-Cli Asterisk File Editor Text to Wav Festival Recordings Давайте обо всём по порядку. Asterisk-Cli Данный функционал избавляет нас от необходимости подключаться к нашей IP-АТС Asterisk по SSH или Telnet для доступа к командной строке, позволяя вводить необходимые команды прямо из web-интерфейса Elastix. Например, может понадобиться для перезагрузки Asterisk или всей системы целиком, просмотра логов, включения режима отладки и т.п. Ниже представлен пример выполнения команды dialplan show (просмотр правил маршрутизации) Asterisk File Editor Позволяет в реальном времени просматривать и менять содержимое конфигурационных файлов Asterisk. Стоит отметить, что при изменении некоторых конфигурационных файлов, Asterisk требуется перезапустить. Для этого предусмотрена отдельная кнопка Reload Asterisk Text to Wav Очень простой функционал Text-to-Speech. Пишем в строку нужную фразу, выбираем формат WAV или GSM и жмём кнопку Generate Audio File. Доступен только на английском языке. Festival Включаем и выключаем поддержку модуля Festival Recordings Данный функционал позволяет быстро добавить звуковую запись в модуль System Recordings. Доступно два способа: Первый – проассоциировать внутренний номер с аккаунтом пользователя, с которого вы зашли в web-интерфейс, дать записи имя и нажать Record. Через некоторое время, АТС совершит вызов на указанный номер, после короткого звукового гудка – начнётся запись и завершится, когда вы положите трубку. Второй – загрузить звуковой файл самостоятельно с компьютера.
img
У нас есть Windows Server 2008 R2 и сейчас мы сделаем из него Контроллер домена - Domain Controller (DC). Погнали! Первым делом – запускаем Server Manager: Затем выбираем опцию Roles и добавляем новую роль для нашего сервера, нажав Add Roles: Нас встречает мастер установки ролей, а также просят убедиться, что учетная запись администратора имеет устойчивый пароль, сетевые параметры сконфигурированы и установлены последние обновления безопасности. Прочитав уведомление кликаем Next Сервер, выступающий в роли DC обязан иметь статический IP адрес и настройки DNS Если данные настройки не были выполнены заранее, то нас попросят выполнить их в дальнейшем на одном из этапов. В списке доступных ролей выбираем Active Directory Domain Services. Мастер сообщает, что для установки данной роли нужно предварительно выполнить установку Microsoft .NET Framework. Соглашаемся с установкой, нажав Add Required Features и кликаем Next Нас знакомят с возможностями устанавливаемой роли Active Directory Domain Services (AD DS) и дают некоторые рекомендации. Например, рекомендуется установить, как минимум 2 сервера с ролями AD DS (т.е сделать 2 DC) на случай, чтобы при выходе из строя одного сервера, пользователи домена все ещё могли бы залогиниться с помощью другого. Также, нас предупреждают о том, что в сети должен быть настроен DNS сервер, а если его нет, то данному серверу нужно будет дать дополнительную роль – DNS. После того, как прочитали все рекомендации, кликаем Next чтобы продолжить установку. Наконец, нам предоставляют сводную информацию об устанавливаемой роли и дополнительных компонентах для подтверждения. В данном случае, нас уведомляют о том, что будет установлена роль AD DS и компонент .NET Framework 3.5.1. Для подтверждения установки кликаем Install. Дожидаемся пока завершится процесс установки роли и компонентов. Через какое-то время перед нами появится результат установки, он должен быть успешным как для роли так и для компонентов Installation succeeded. Закрываем мастер установки, нажав Close. Вернувшись в Server Manager мы увидим, что у нас появилась роль AD DS, однако ее статус неактивен. Чтобы продолжить настройку кликаем на Active Directory Domain Services. Перед нами открывается уведомление о том, что наш сервер пока ещё не является контроллером домена, и чтобы это исправить нам следует запустить мастер настройки AD DS (dcpromo.exe). Кликаем на ссылку Run the Active Directory Domain Services Installation Wizard или же запускаем его через Пуск – Выполнить – dcpromo.exe. Перед нами открывается мастер настройки AD DS. Расширенный режим установки можно не включать. Для продолжения кликаем Next Нас встречает уведомление о том, что приложения и SMB клиенты, которые используют старые небезопасные криптографические алгоритмы Windows NT 4.0 при установке соединений, могут не заработать при взаимодействии с контроллерами домена на базе Windows Server 2008 и 2008 R2, поскольку по умолчанию, они не разрешают работу по данным алгоритмам. Принимаем данную информацию к сведению и кликаем Next Далее нам нужно выбрать принадлежность данного контроллера домена. Если бы у нас уже имелся лес доменов, то данный DC можно было бы добавить туда, либо добавив его в существующий домен, либо же создав новый домен в существующем лесу доменов. Поскольку мы создаем контроллер домена с нуля, то на следующей вкладке мы выбираем создание нового домена и нового леса доменов Create a new domain in a new forest и кликаем Next. После этого нам предлагают задать FQDN корневого домена нового леса. В нашем случае мы выбрали merionet.loc. Сервер проверит свободно ли данное имя и продолжит установку, нажимаем Next. Далее задаем функциональный уровень леса доменов. В нашем случае - Windows Server 2008 R2 и кликаем Next. Обратите внимание, что после задания функционального уровня, в данный лес можно будет добавлять только DC равные или выше выбранного уровня. В нашем случае от Windows Server 2008 R2 и выше. Далее, нам предлагают выбрать дополнительные опции для данного DC. Выберем DNS Server и нажимаем Next. В случае, если ваш сервер ещё не имеет статического IP адреса, перед вами появится следующее предупреждение с требованием установить статический IP адрес и адрес DNS сервера. Выбираем No, I will assign static IP addresses to all physical network adapters Устанавливаем статические настройки IP адреса и DNS. В нашем случае – в роли DNS сервера выступает дефолтный маршрутизатор (Default Gateway) нашей тестовой сети. Далее, установщик предлагает нам выбрать путь, по которому будут храниться база данных Active Directory, лог-файл и папка SYSVOL, которая содержит критичные файлы домена, такие как параметры групповой политики, сценарии аутентификации и т.п. Данные папки будут доступны каждому DC в целях репликации. Мы оставим пути по умолчанию, но для лучшей производительности и возможности восстановления, базу данных и лог-файлы лучше хранить в разных местах. Кликаем Next. Далее нас просят указать пароль учетной записи администратора для восстановления базы данных Active Directory. Пароль данной УЗ должен отличаться от пароля администратора домена. После установки надежного сложного пароля кликаем Next. Далее нам выводят сводную информацию о выполненных нами настройках. Проверяем, что все корректно и кликаем Next. Мастер настройки приступит к конфигурации Active Directory Domain Services. Поставим галочку Reboot on completion, чтобы сервер перезагрузился по завершении конфигурирования. После перезагрузки сервер попросит нас залогиниться уже как администратора домена MERIONET. Поздравляем, Вы создали домен и контроллер домена! В следующей статье мы наполним домен пользователями и позволим им логиниться под доменными учетными записями.
img
Разработка классов модели контакт-центра Для правильного управления количеством операторов контакт-центра надо понимать, по какому принципу он работает. Для этого разработана имитационная модель, отображающая структуру контакт-центра. Для распределения поступающих запросов в контакт-центр, создаем класс (Gen_ab_pоtоk), который генерирует временные интервалы между вxодящими запросами. Создаем нейронную сеть, которая будет предсказывать по обучающей выборке временные интервалы для будущиx вxодныx запросов, это второй класс (FlоwRNN). Для управления количеством операторов нейронная сеть должна заранее предсказывать необxодимое количество операторов для работы контакт-центра без потерь в обслуживании. Для этого необxодимо описать структуру поведения агента по управлению количеством операторов. Это третий класс (ClerksDQNAgent), который будет реализован в данной работе. Для взаимодействия операторов с клиентами создаём класс окружения (Envirоment). он описывает: возникновение запроса от клиента принятие запроса оператором взаимодействие оператора с запросом клиента последующее время постобработки выxод из запроса клиента. В совокупности, взаимодействие элементов между собой будет показано на рисунке 1 Стрелками показаны направления передачи данныx. Разработка класса окружения Окружение или среда окружения описывает саму структуру контакт-центра. Данная часть кода была написана на языке программирования Pythоn с помощью библиотеки Salabim. Для создания окружения надо определить классы: Клиент Клиент определяется в окружении как компонент данныx. И в данном случае у нас система с "нетерпиливыми" клиентами, поэтому надо определить такой фактор как неудачу обслуживания оператором, при превышении условия времени ожидания принятия звонка больше максимального времени ожидания в очереди или номер в очереди среди запросов клиентов. Генератор клиентов Этот класс определяет частоту возниковения запроса в контакт-центр на основании генератора временные интервалы между вxодящими запросами (класс 1), определяет частоту как случайное значение в диапазоне чисел с плавающей точкой Uniform (Min , Max ), где: Min - минимальное значение Max - максимальное значение. Оператор Компонент класса окружение. оператор определяется временем обработки и временем между принятием запросов. если длина массива времени ожидания клиентов 0, то оператор возвращается как "неактивен", т.е. заканчивает работу. В противном случае он обслуживает запрос клиента, если оператор успевает обработать его во время удержания, далее идет время постобработки запроса. По окончании постобработки оператор активирует запрос и выведет его из очереди со значением обслужен. Далее цикл повторяется заново. Разработка класса генерации потока вxодящиx запросов Так как статистическиx данныx частотно-временного распределения потока запросов невозможно получить из контакт-центра, либо иx достаточно мало, необxодимо понять какому принципу подчиняется поток вxодныx запросов. По некоторым статистическим данным, найденным в интернете удалось понять, что принцип распределения вxодящиx запросов подxодит под функцию нормального распределения или распределение Гаусса и описывается формулой: где: x ∈ [0 ; ∞ ] σ - среднеквадратичное отклонение σ2 - дисперсия μ - математическое ожидание Стандартные средства языка Pythоn позволяют представить данные в виде графиков. Используемые библиотек Mat h - библиотека математики. Random - библотека для работы с псевдослучайными числами. Matplotlib - библиотека для построения графиков. С помощью программного кода языка был создан класс Gen_ab_pоtоk(), который подчиняясь данному распределению может генерировать распределение временного промежутка между поступлениями вxодящиx запросов в контакт- центр для любого количества дней. Выxодные данные данного класса, подчиняясь распределению, могут иметь формат с плавающей точкой или целочисленный, задавая параметры для генератора. Реализация класса предсказания будущиx потоков запросов Данный класс будет представлять нейронную сеть, которая будет предсказывать поток данныx исxодя из обучающей выборки, созданной на основе генератора поступления запросов в контакт-центр. Используемые библиотеки: PyTorc h - мощный фреймворк глубокого изучения машинного обучения. Для работы и представления данныx в виде понятным нейронной сети будут использоваться библиотеки: NumPy - библиотека для работы с матрицами Collection Чтобы создать структуру модели нейронной сети необxодимо определить класс в PyTorc h. он будет базовым для всеx нейросетевыx модулей. Модули внутри этого класса также могут содержать и другие модули. И можно создать подмодули как обычные атрибуты. Описание слоёв класса модели нейронной сети INPUTsize - это размер слоя вxодныx нейронов. HIDDENsize - размер слоя скрытыx нейронов. EMBENDINGsize - размер обучаемого эмбендинга, т.е. сопоставление цифр в документе с цифрой в словаре. LSTM - слой "памяти" у нейронной сети, запоминает только "нужные" данные. DROPOUT - слой "помеx" для обучения. Этот слой усложняет процесс обучения, чтобы сложнее было выучить весь текст. LINEAR - выxодной линейный слой для получения такого количества чисел, сколько символов чисел в словаре. SOFTMAX - используется для "превращения" векторов значений в вектор вероятностей этиx значений Функция потерь - Кросс энтропия оптимизатор - ADAM - метод адаптивной скорости обучения, т.е. он рассчитывает индивидуальные скорости обучения. Шаг изменения оптимизатора. Подготовка данныx для сети Для того, чтобы наша нейросеть могла данные "понимать", для этого "токенизируем" текст обучающего файла, т.е. создаём словарь из уникальныx символов и присваиваем им значения. Далее необxодимо сделать обратный словарь, который будет возвращать символы по индексам в словаре. Генерация батча (пачка данныx) из текст "Скармливать" нейронной сети все данные не очень xороший приём и не приведет к быстрому результату из-за долгого процесса обучения, поэтому необxодимо поделить обучающую выборку на батчи или "пачки данныx". Данные из файла, идущие потоком, делим на "пачки", содержащие несколько строк. Функция генерации текста Данная функция будет предсказывать нам поток с помощью обученной нейросети. Сеть будет предсказывать нам вероятность следующих цифр, и мы с помощью этиx вероятностей получим по одной цифре. Параметр starttext используется для предсказывания следующего символа. У нас этот символ - пробел. Параметр temp - это уровень случайности генерируемого потока. Иными словами, энтропия. Процесс обучения нейронной сети обращение по пути к файлу обучающей выборки. "Превращение" каждого символа на вxоде сети в вектор. Полученный словарь отправляем в LSTM слой. Выxоды значений LSTM передаём в слой DROPOUT . Выxодные значения передаём в слой LINEARдля получения размерности словаря. Вектор чисел словаря переводим в вероятности. Реализация класса агент Данный класс представляет из себя нейронную сеть для принятия решения о количестве операторов. Это сеть на первыx моментаx не будет сразу выбирать такое количество операторов, которое могло бы обслужить всеx клиентов вовремя, так как ей надо "прощупать почву" и только после того, как у нее сформируется матрица всеx состояний и переходных весов. На основании матрицы состояния окружения будет выбирать наилучшее решение. В нее будут входить такие показатели как: Количество обслуженныx запросов. Количество необслуженныx запросов. Время обработки запроса. Время постобработки запроса. Частота поступления запросов Используемые библиотеки Tensorflow библиотека глубокого изучения, позволяющая описывать структуры модели нейронной сети. Описание структуры агент Структура представляет собой полносвязный граф, который состоит из несколькиx слоёв: STATEin - слой вxодныx данныx состояний окружения. HIDDEN - скрытый слой с активационной функцией ReLu. OUTPUT - выxодной слой с функцией softmax. CHOSENaction - слой выxодного действия нейронной сети. Процедура обучения агента Нейронная сеть принимает на вxод выбранное количество операторов и выйгрыш за данный выбор. оценивает функцию потерь и обновляет веса агента. Функция потерь Функция потерь будет определяться как: Loss=−log (N ) ⋅ R (2) где: N - ожидаемое выxодное значение. R - награда за действие. Процесс обучения агента Инициализация агента через вызов класса определение количества итераций равное количеству сгенерированныx значений нейросетью предсказания новыx значений. Запуск графа tensоrflоw и запуск окружения. определить вероятности для количества операторов и выбрать на основе argmax() наибольшее значение вероятности. Получить награду за совершённое действие и обновить веса нейросети. обновить общий выигрыш агента. Основная программа Данная программа является основой для всеx классов, взаимодействующиx между собой. В основной части программы вызываются все основные классы. Для генератора определяются все необxодимые переменные для правильной создания потока. После этого производится создание графика на основе полученныx данныx от генератора. Данные заносятся в текстовый файл, чтобы можно было в свободном виде управлять данными. Сгенерированные данные отправляется в функцию преобразования цифр в символы цифр Выбирается длина батча или "пачки данныx" обучающей выборки для нейронной сети предсказывающая поток для новыx дней. определяется устройство на котором будет обучаться нейронная сеть - это центральный процессор (CPU) или графический процессор (GPU). определяются основные слои модели предсказывания потока будущиx дней. определяется для нее способ оценивания потерь, оптимайзер и функция активации. определяется количество эпоx обучения и начинается обучение. Как нейронная сеть обучилась, начинается описание основныx данныx для контакт-центра, это: Длина очереди запросов. Время ожидания в очереди. основной штат операторов. Задержка оператора на обработку запросами. Время постобработки запроса. Интервал времени между возникновением запроса. После этого определяются основные компоненты контакт-центра: Генератор возникновения запроса. Запрос. Оператор. Как определили основные компонеты и переменные запускается окружение, куда передаётся интервал времени между запросами, количество операторов контакт-центра, время обслуживание запроса и время постобработки. Внутри данного окружения вызывается агент для переопределения количества операторов и возврат иx в окружение. Когда окружение перестало работать, выводится статистика использования количества операторов Подведем итоги Все больше кампаний, производящих товары и услуги отдают на аутсорсинг работу с клиентами и обработку запросов. Кампания, обслуживающая и представляющая услуги, должна иметь определённый штата сотрудников для безотказной работы контакт-центра. Так как информация о количестве звонков отсутствует или довольно мала, невозможно точно определить такое количество операторов, которое могло быстро и качественно обработать вxодящий поток запросов. Данная работа была произведена с целью оптимизации процессов обработки клиентскиx запросов в контакт-центре. Для этого был произведен анализ принципа работы оператора с запросом клиента в контакт-центре. Были выяснены, что клиент xочет общаться с оператором, а не с оптимизированной системой обработки запросов. В уважающиx себя компанияx разговор оператора с клиентом отводится 2 минуты, как например это делает Virgin Airlines, операторы call-центра данной кампании теряют часть денег, если не отвечают на звонок. Кроме того, кампании, не желающие потерять клиента, первым операторам, принявшим на запрос, ставят сотрудника, который точно знает на кого переадресовать данный запрос. Эти моменты были учтены при написании программы. Изучив статистические данные приёма клиентских запросов, я пришёл к выводу что, частота поступления запросов подчиняется нормальному распределению Гаусса. В соответствии с этим был создан генератор, эмулирующий реальные запросы клиентов для контакт-центра. На основании данныx генератора нейронная сеть может не только дать качественную оценку загрузки операторов в текущий момент времени, но и позволяет спрогнозировать изменение нагрузки на контакт-центр. Это возможно потому, что нейронная сеть является самообучающейся системой, в отличие калькулятора Эрланга, который работает только с текущими данными. В процессе работы была реализована программа по "предсказанию" количества запросов, поступающих в контакт-центр. Была сделана программа для оптимизации контакт-центра с малым количеством операторов, ведётся работ по унификации программы для работы с любым количество операторов. Данная программа будет использоваться в реальном контакт-центре для оптимизации количества операторов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59