По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Windows и Linux являются очень производительными операционными системами, и у каждой из них есть множество плюсов и минусов, которые мы можем обсудить. Но как часто вы задумываетесь о потенциале сценариев и автоматизации двух операционных систем? Мы решили посмотреть, что можно делать с помощью скриптовых функций, поставляемых с Windows и Linux. Немного истории: PowerShell PowerShell - это среда автоматизации и задач Microsoft, удобная для управления конфигурацией. PowerShell использует компоненты, называемые командлетами, которые встроены в PowerShell. Дополнительные функции доступны через модули. Они устанавливаются из галереи PowerShell непосредственно из командной строки. PowerShell отличается от Bash, потому что он предназначен для взаимодействия со структурами .NET изначально в Windows. Это означает, что он может передавать объекты и данные между сценариями, приложениями и сеансами. Каждый объект имеет свой собственный набор свойств, что делает обработку данных в PowerShell еще более детальной. Данные могут быть указаны как числа (целые числа), слова (строки), логические (истина и ложь) и многие другие типы. Это означает, что вы можете по-настоящему определиться с тем, как ваши скрипты обрабатывают ввод и вывод данных. Немного истории: Bash Системы Linux и Unix всегда выигрывали от структурирования многопользовательской терминальной среды. Это означает, что вы можете запускать дополнительные сессии в той же системе и запускать сценарии и приложения, не влияя на основные сессии, в которые вошли другие пользователи. Это сильно отличалось от ранних систем Windows и DOS, которые были однопользовательскими средами с одной сессией, до появления Windows NT в середине 90-х годов. Первоначальная оболочка, поставляемая с Unix, была известна как оболочка Bourne, названная в честь ее создателя Стивена Борна. Bash (Bourne again Shell) является преемником оболочки Bourne с открытым исходным кодом. Bash получил широкое распространение, когда Linux был создан в начале 90-х годов, поэтому он используется до сих пор. Существует множество функций, которые делают Bash очень популярным, главными из которых являются стабильность системы и то, что это открытый исходный код. Из-за этого он встречается практически в каждом дистрибутиве Linux. Все эти факторы делают его одной из наиболее часто используемых сред сценариев для ИТ-специалистов. Когда использовать PowerShell Администрирование Windows стало намного проще с тех пор, как разработка PowerShell стала частью среды Microsoft. Вместо того, чтобы бороться с неудобными пакетными файлами и планировщиком Windows, системные администраторы получают доступ к новому набору инструментов с впечатляющими приложениями и функциями. PowerShell может уточнять детали для создания эффективных скриптов, а также некоторых коммерчески доступных приложений. PowerShell может извлекать данные прямо из подсистемы WMI, предоставляя вам в режиме реального времени глубокую информацию обо всем, от идентификаторов процессов и счетчиков обработчиков. PowerShell включен в платформу .NET, поэтому вы можете создавать великолепно выглядящие меню и формы winform. Вы можете использовать PowerShell, чтобы делать что угодно - от запросов к базам данных SQL до захвата ваших любимых RSS-каналов прямо в сеанс PowerShell для дальнейших манипуляций. Это настоящий швейцарский нож для системного администрирования в среде Windows. Когда использовать Bash Если вы используете системы Linux, значит, вы знаете о необходимости автоматизации задач. Ранние ленточные накопители использовались для резервного копирования с архивированием tar. Эти операции могут быть написаны в Bash, а затем запущены через расписание cron. Сегодня мы воспринимаем подобные вещи как должное, но многие задачи приходилось выполнять вручную до создания таких сред, как Bash. Все, что связано с манипуляциями с файлами, такими как архивирование, копирование, перемещение, переименование и удаление файлов, подходит Bash. Также возможны более сложные манипуляции с файлами. Вы можете найти файлы, созданные в определенные даты, и для каких файлов были изменены права доступа CHMOD и владельца. Bash также отлично подходит для создания интерактивных меню для запуска скриптов и выполнения системных функций. Они выполняются в неграфической среде, но работают очень хорошо. Это отлично подходит для обмена вашими библиотеками скриптов с другими. Отличия PowerShell и Bash в чем-то похожи, но также очень разные. Вот четыре основных отличия. PowerShell по-разному обрабатывает данные PowerShell отличается от Bash способом обработки данных. PowerShell - это язык сценариев, но он может передавать данные в разных форматах таким образом, чтобы он выглядел как язык программирования. PowerShell также имеет дело с областями действия в своих скриптах. Использование переменных с $session, $script и $cache дает вашим сценариям дополнительную гибкость, позволяя передавать переменные другим командам в том же сценарии или сеансе PowerShell. Bash - это CLI Bash - это CLI (Command Language Interpreter), что означает интерпретатор командного языка. Как и PowerShell, Bash может передавать данные между командами по каналам. Однако эти данные отправляются в виде строк. Это ограничивает некоторые вещи, которые вы можете делать с выводом ваших скриптов, например математические функции. PowerShell - это и CLI, и язык Интегрированная среда сценариев PowerShell по умолчанию (ISE - Integrated Scripting Environment), поставляемая с Windows, показывает, как можно быстро и легко создавать сценарии, не жертвуя прямым доступом к командной строке. По умолчанию верхний раздел позволяет набирать строки кода сценария и быстро его тестировать. Окно ниже представляет собой командную строку PowerShell, которая дает вам быстрый доступ для выполнения отдельных команд. Это дает вам лучшее из обоих миров между языком сценариев и оболочкой командной строки. ISE - отличный инструмент для быстрого создания прототипов решений. PowerShell и Bash - мощные инструменты Среда, в которой вы работаете, определит, какой инструмент вы выберете. Системные администраторы Linux, пишущие сценарии в Bash, считают, что освоить сценарии PowerShell относительно легко. Навыки написания сценариев PowerShell также в определенной степени переносятся на сценарии Bash. Основными различиями между этими двумя языками сценариев являются синтаксис и обработка данных. Если вы понимаете такие концепции, как переменные и функции, тогда изучение любого из этих языков становится проще.
img
Давайте рассмотрим один пример настройки DHCPv6: В этом примере у нас есть DHCP-клиент, маршрутизатор и DHCP-сервер. Поскольку DHCP-клиент и DHCP-сервер не находятся в одной подсети, нам придется настроить маршрутизатор для ретрансляции сообщений DHCP. Поиск клиентом IPv6 адреса будет начинаться с сообщения запроса: Клиент будет использовать свой link-local адрес в качестве источника, а адрес назначения будет многоадресный адрес FF02:: 1:2 (all-DHCP-agents). Это link-local multicast адрес, поэтому он не будет покидать подсеть. В результате DHCP-сервер никогда не получит это сообщение запроса. На маршрутизаторе мы настроим ретрансляцию DHCP таким образом, чтобы запрашивающее сообщение было переадресовано на DHCP-сервер: Router(config)#interface fa0/0 Router(config-if)#ipv6 dhcp relay destination 2001:5:6:7::2 Это гарантирует, что маршрутизатор пересылает сообщения DHCP между клиентом и DHCP-сервером. Вот как это выглядит: Маршрутизатор переадресует сообщение запроса, и адрес будет изменнен. Источником будет IPv6-адрес на интерфейсе Fa1/0 нашего маршрутизатора, а местом назначения-IPv6-адрес DHCP-сервера. Это большая разница по сравнению с DHCP relay для IPv4, где был бы использован IP-адрес на Fa0/0. Другие сообщения DHCP будут использовать те же адреса. Между маршрутизатором и DHCP-сервером мы будем использовать 2001:5:6:7::1 и еще 2001:5:6:7::2 адреса. Маршрутизатор будет перенаправлять трафик на DHCP-клиент, используя его link-local адрес и в качестве места назначения.
img
Система хранения данных - это программно-аппаратное решение для надежного и безопасного хранения данных, а также предоставления гарантированного доступа к ним. Так, под надежностью подразумевается обеспечение сохранности данных, хранящихся в системе. Такой комплекс мер, как резервное копирование, объединение накопителей в RAID массивы с последующим дублированием информации способны обеспечить хотя бы минимальный уровень надежности при относительно низких затратах. При этом также должна обеспечиваться доступность, т. е. возможность беспрепятственной и непрерывной работы с информацией для санкционированных пользователей. В зависимости от уровня привилегий самих пользователей, система предоставляет разрешение для выполнения операций чтения, записи, перезаписи, удаления и так далее. Безопасность является, пожалуй, наиболее масштабным, важным и труднореализуемым аспектом системы хранения данных. Объясняется это тем, что требуется обеспечить комплекс мер, направленный на сведение риска доступа злоумышленников к данным к минимуму. Реализовать это можно использованием защиты данных как на этапе передачи, так и на этапе хранения. Также важно учитывать возможность самих пользователей неумышленно нанести вред не только своим, но и данным других пользователей. Топологии построения систем хранения данных Большинство функции, которые выполняют системы хранения данных, на сегодняшний день, не привязаны к конкретной технологии подключения. Описанные ниже методы используется при построении различных систем хранения данных. При построении системы хранения данных, необходимо четко продумывать архитектуру решения, и исходя из поставленных задач учитывать достоинства и недостатки, присущие конкретной технологии в конкретной ситуации. В большинстве случаев применяется один из трех видов систем хранения данных: DAS; NAS; SAN. DAS (Direct-attached storage) - система хранения данных с прямым подключением (рисунок ниже). Устройство хранения (обычно жесткий диск) подключается непосредственно к компьютеру через соответствующий контроллер. Отличительным признаком DAS является отсутствие какого-либо сетевого интерфейса между устройством хранения информации и вычислительной машиной. Система DAS предоставляет коллективный доступ к устройствам хранения, однако для это в системе должно быть несколько интерфейсов параллельного доступа. Главным и существенным недостатком DAS систем является невозможность организовать доступ к хранящимся данным другим серверам. Он был частично устранен в технологиях, описанных ниже, но каждая из них привносит свой новый список проблем в организацию хранения данных. NAS (Network-attached storage) - это система, которая предоставляет доступ к дисковому пространству по локальной сети (рисунок выше). Архитектурно, в системе NAS промежуточным звеном между дисковым хранилищем и серверами является NAS-узел. С технической точки зрения, это обычный компьютер, часто поставляемый с довольно специфической операционной системой для экономии вычислительных ресурсов и концентрации на своих приоритетных задачах: работы с дисковым пространством и сетью. Дисковое пространство системы NAS обычно состоит из нескольких устройств хранения, объединенных в RAID - технологии объединения физических дисковых устройств в логический модуль, для повышения отказоустойчивости и производительности. Вариантов объединения довольно много, но чаще всего на практике используются RAID 5 и RAID 6 [3], в которых данные и контрольные суммы записываются на все диски одновременно, что позволяет вести параллельные операции записи и чтения. Главными преимуществами системы NAS можно назвать: Масштабируемость - увеличение дискового пространства достигается за счет добавления новых устройств хранения в уже существующий кластер и не требует переконфигурации сервера; Легкость доступа к дисковому пространству - для получения доступа не нужно иметь каких-либо специальных устройств, так как все взаимодействие между системой NAS и пользователями происходит через сеть. SAN (Storage area network) - система, образующая собственную дисковую сеть (рисунок ниже). Важным отличием является то, что с точки зрения пользователя, подключенные таким образом SAN-устройства являются обычными локальными дисками. Отсюда и вытекают основные преимущества системы SAN: Возможность использовать блочные методы хранения - базы данных, почтовые данные, Быстрый доступ к данным - достигается за счет использования соответствующих протоколов. Системы резервного копирования данных Резервное копирование - процесс создания копии информации на носителе, предназначенном для восстановления данных в случае их повреждения или утраты. Существует несколько основных видов резервного копирования: Полное резервное копирование; Дифференциальное резервное копирование; Инкрементное резервное копирование. Рассмотрим их подробнее. Полное резервное копирование. При его применении осуществляется копирование всей информации, включая системные и пользовательские данные, конфигурационные файлы и так далее (рисунок ниже). Дифференциальное резервное копирование. При его применении сначала делается полное резервное копирование, а впоследствии каждый файл, который был изменен с момента первого полного резервного копирования, копируется каждый раз заново. На рисунке ниже представлена схема, поясняющая работу дифференциального резервного копирования. Инкрементное резервное копирование. При его использовании сначала делается полное резервное копирование, затем каждый файл, который был изменен с момента последнего резервного копирования, копируется каждый раз заново (рисунок ниже). К системам резервного копирования данных выдвигаются следующие требования: Надежность - обеспечивается использованием отказоустойчивого оборудования для хранения данных, дублированием информации на нескольких независимых устройствах, а также своевременным восстановлением утерянной информации в случае повреждения или утери; Кроссплатформенность - серверная часть системы резервного копирования данных должна работать одинаково с клиентскими приложениями на различных аппаратно-программных платформах; Автоматизация - сведение участие человека в процессе резервного копирования к минимуму. Обзор методов защиты данных Криптография - совокупность методов и средств, позволяющих преобразовывать данные для защиты посредством соответствующих алгоритмов. Шифрование - обратимое преобразование информации в целях ее сокрытия от неавторизованных лиц. Признаком авторизации является наличие соответствующего ключа или набора ключей, которыми информация шифруется и дешифруется. Криптографические алгоритмы можно разделить на две группы: Симметричное шифрование; Асимметричное шифрование. Под симметричным шифрованием понимаются такие алгоритмы, при использовании которых информация шифруется и дешифруется одним и тем же ключом. Схема работы таких систем представлена на рисунке ниже. Главным проблемным местом данной схемы является способ распределения ключа. Чтобы собеседник смог расшифровать полученные данные, он должен знать ключ, которым данные шифровались. Так, при реализации подобной системы становится необходимым учитывать безопасность распределения ключевой информации для того, чтобы на допустить перехвата ключа шифрования. К преимуществам симметричных криптосистем можно отнести: Высокая скорость работы за счет, как правило, меньшего числа математических операций и более простых вычислений; Меньшее потребление вычислительной мощности, в сравнении с асимметричными криптосистемами; Достижение сопоставимой криптостойкости при меньшей длине ключа, относительно асимметричных алгоритмов. Под асимметричным шифрованием понимаются алгоритмы, при использовании которых информация шифруется и дешифруется разными, но математически связанными ключами - открытым и секретным соответственно. Открытый ключ может находится в публичном доступе и при шифровании им информации всегда можно получить исходные данные путем применения секретного ключа. Секретный ключ, необходимый для дешифрования информации, известен только его владельцу и вся ответственность за его сохранность кладется именно на него. Структурная схема работы асимметричных криптосистем представлена на рисунке ниже. Ассиметричные криптосистемы архитектурно решают проблему распределения ключей по незащищенным каналам связи. Так, если злоумышленник перехватит ключ, применяемый при симметричном шифровании, он получит доступ ко всей информации. Такая ситуация исключена при использовании асимметричных алгоритмов, так как по каналу связи передается лишь открытый ключ, который в свою очередь не используется при дешифровании данных. Другим местом применения асимметричных криптосистем является создание электронной подписи, позволяющая подтвердить авторство на какой-либо электронный ресурс. Достоинства асимметричных алгоритмов: Отсутствует необходимость передачи закрытого ключа по незащищенного каналу связи, что исключает возможность дешифровки передаваемых данных третьими лицами, В отличии от симметричных криптосистем, в которых ключи шифрования рекомендуется генерировать каждый раз при новой передаче, в асимметричной их можно не менять продолжительное время. Подведём итоги При проектировании таких систем крайне важно изначально понимать какой должен получиться результат, и исходя из потребностей тщательно продумывать физическую топологию сети хранения, систему защиты данных и программную архитектуру решения. Также необходимо обеспечить резервное копирование данных для своевременного восстановления в случае частичной или полной утери информации. Выбор технологий на каждом последующем этапе проектирования, зачастую, зависит от принятых ранее решений, поэтому корректировка разработанной системы в таких случаях, нередко, затруднительна, а часто даже может быть невозможно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59