По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Международная организации ISO представляет свою уникальную разработку под названием OSI, которой необходимо создать базу для разработки сетевых стандартов. Сетевая модель TCP/IP контролирует процесс межсетевого взаимодействия между компьютерными системами. Несмотря на это, модель OSI включает в себя 7 уровней сетевого взаимодействия, а модель TCP/IP - 4. Межсетевой экран Netfilter определяет протоколы Некоторые из них могут быть заданы только косвенно. Протоколы сетевого уровня и межсетевое экранирование Для формирования сквозной транспортной системы необходимо предоставить сетевой уровень (Network Layer). Он определяет маршрут передачи данных, преобразует логические адреса и имена в физические; в модели OSI (Таблица 2.1) данный уровень получает дейтаграммы, определяет маршрут и логическую адресацию, и направляет пакеты в канальный уровень, при этом сетевой уровень прибавляет свой заголовок. Протокол IP (Internet Protocol) Основным протоколом является IP, который имеет две версии: IPv4 и IPv6. Основные характеристики протокола IPv4: Размер адреса узла - 4 байта В заголовке есть поле TTL Нет гарантии при доставке, что будет правильная последовательность Пакетная передача данных. Если превысится максимальный размер для пакета, тогда обеспечивается его фрагментация. Версия состоящее из четырех бит поле, которое содержит в себе номер версии IP протокола (4 или 6). Длина заголовка - состоящее их 4х бит поле, которое определяет размер заголовка пакета. Тип обслуживания поле, которое состоит из 1 байта; на сегодняшний день не используется. Его заменяют на два других: DSCP, которое делит трафик на классы обслуживания, размер его составляет 6 бит. ECN - поле, состоящее из 2 бит, используется в случае, если есть перегрузка при передаче трафика. Смещение фрагмента используется в случае фрагментации пакета, поле которого равно 13 бит. Должно быть кратно 8. "Время жизни" поле, длиной в 1 байт, значение устанавливает создающий IP-пакет узел сети, поле, состоящее из 1 байта Транспорт поле, размером в один байт. Доп. данные заголовка поле, которое имеет произвольную длину в зависимости от содержимого и используется для спец. задач. Данные выравнивания. Данное поле используется для выравнивания заголовка пакета до 4 байт. IP уникальный адрес. Адреса протокола четвёртой версии имеют длину 4 байта, а шестой 16 байт. IP адреса делятся на классы (A, B, C). Рисунок 2.2. Сети, которые получаются в результате взаимодействия данных классов, различаются допустимым количеством возможных адресов сети. Для классов A, B и C адреса распределяются между идентификатором (номером) сети и идентификатором узла сети Протокол ICMP Протокол сетевого уровня ICMP передает транспортную и диагностическую информацию. Даже если атакующий компьютер посылает множество ICMP сообщений, из-за которых система примет его за 1 из машин. Тип поле, которое содержит в себе идентификатор типа ICMP-сообщения. Оно длиною в 1 байт. Код поле, размером в 1 байт. Включает в себя числовой идентификатор, Internet Header + 64 bits of Original Data Datagram включает в себе IP заголовок и 8 байт данных, которые могут быть частью TCP/UDP заголовка или нести информацию об ошибке. Типы ICMP-сообщений, есть во всех версиях ОС Альт, и они подразделяются на две большие категории. Протоколы транспортного уровня и межсетевое экранирование При ПТУ правильная последовательность прихода данных. Основными протоколами этого уровня являются TCP и UDP. Протокол UDP Основные характеристики протокола UDP приведены ниже. Простую структура, в отличие от TCP Сведения придут неповрежденными, потому что проверяется контрольная сумма Нет гарантии надёжной передачи данных и правильного порядка доставки UDP-пакетов Последнее утверждение нельзя рассматривать как отрицательное свойство UDP. Поддержка протокола не контролирует доставку пакетов, значит передача данных быстрее, в отличие от TCP. UDP-пакеты являются пользовательскими дейтаграммами и имеют точный размер заголовка 8 байт. Адрес порта источника - поле, размером 16 бит, с № порта. Адрес порта пункта назначения - поле, размером 16 бит, в котором есть адрес порта назначения. Длина - размером 16 бит. Оно предназначено для хранения всей длины дейтаграммы пользователя и заголовка данных. Контрольная сумма. Данная ячейка обнаруживается всею пользовательскую дейтаграмму. В UDP контрольная сумма состоит из псевдозаголовока, заголовка и данных, поступивших от прикладного уровня. Псевдозаголовок это часть заголовка IP-пакета, в котором дейтаграмма пользователя закодирована в поля, в которых находятся 0. Передающее устройство может вычисляет итоговую сумму за восемь шагов: Появляется псевдозаголовок в дейтаграмме. В поле КС по итогу ставится 0. Нужно посчитать число байтов. Если четное тогда в поле заполнения мы пишем 1 байт (все нули). Конечный результат - вычисление контрольной суммы и его удаление. Складываются все 16-битовых секций и дополняются 1. Дополнение результата. Данное число и есть контрольная сумма Убирается псевдозаголовка и всех дополнений. Передача UDP-сегмента к IP программному обеспечению для инкапсуляции. Приемник вычисляет контрольную сумму в течение 6 шагов: Прописывается псевдозаголовок к пользовательской дейтаграмме UDP. Если надо, то дополняется заполнение. Все биты делятся на 16-битовые секции. Складывается все 16-битовых секций и дополняются 1. Дополнение результата. Когда результат = нулю, убирается псевдозаголовок и дополнения, и получает UDP-дейтаграмму только семь б. Однако, если программа выдает иной рез., пользовательская дейтаграмма удаляется. Чтобы передать данные - инкапсулируется пакет. В хосте пункта назначения биты декодируются и отправляются к звену данных. Последний использует заголовок для проверки данных, заголовок и окончание убираются, если все правильно, а дейтаграмма передается IP. ПО делает свою проверку. Когда будет все правильно, заголовок убирается, и пользовательская дейтаграмма передается с адресами передатчика и приемника. UDP считает контрольную сумму для проверки . Если и в этот раз все верно, тогда опять заголовок убирается, и прикладные данные передаются процессу. Протокол TCP Транспортный адрес заголовка IP-сегмента равен 6 (Таблица 2.2). Протокол TCP совсем другой, в отличие от протокола UDP. UDP добавляет свой собственный адрес к данным, которые являются дейтаграммой, и прибавляет ее IP для передачи. TCP образует виртуальное соединение между хостами, что разрешает передавать и получать данные как поток байтов. Также добавляется заголовок перед передачей пакету СУ. Порт источника и порт приемника поля размером по 16 бит. В нем есть номер порта службы источника. Номер в последовательности поле размером в 32 бита, содержит в себе номер кадра TCP-пакета в последовательности. Номер подтверждения поле длиной в 32 бита, индикатор успешно принятых предыдущих данных. Смещение данных поле длиной в 4 бита (длина заголовка + смещение расположения данных пакета. Биты управления поле длиной 6 бит, содержащее в себе различные флаги управления. Размер окна поле размером 16 бит, содержит в себе размер данных в байтах, их принимает тот, кто отправил данный пакет. Макс.значение размера окна - 40967байт. Контр. сумма поле размером 16 бит, содержит в себе значение всего TCP-сегмента Указатель поле размером 16 бит, которое используется, когда устанавливается флаг URG. Индикатор количества пакетов особой важности. Опции - поле произв. длины, размер которого зависит от данных находящихся в нём. Чтобы повысить пропускную функцию канала, необходим способ "скользящего окна". Необходимы только поля заголовка TCP-сегмента: "Window". Вместе с данным полем можно отправлять максимальное количество байт данных. Классификация межсетевых экранов Межсетевые экраны не позволяют проникнуть несанкционированным путем, даже если будет использоваться незащищенныеместа, которые есть в протоколах ТСР/IP. Нынешние МЭ управляют потоком сетевого трафика между сетями с различными требованиями к безопасности. Есть несколько типов МЭ. Чтобы их сравнить, нужно с точностью указать все уровни модели OSI, которые он может просчитать. МЭ работают на всех уровнях модели OSI. Пакетные фильтры Изначально сделанный тип МЭ и есть пакетный фильтр. ПФ - часть маршрутизаторов, которые могут быть допущены к разным сист.адресам. ПФ читают информацию заголовков пакетов 3-го и 4-го уровней. ПФ применяется в таких разделай сетевой инфраструктуры, как: пограничные маршрутизаторы; ос; персональные МЭ. Пограничные роутеры Главным приоритетом ПФ является скорость. Также пф ограничивать доступ при DoS-атаки. Поэтому данные пф встроены в большинство роутеров. Преимущества пф: Пф доступен для всех, так как остается в целостности ТСР-соединение. Недостатки пакетных фильтров: Пфпропускают данные с высших уровней МЭ имеет доступ не ко всей информации Большинство пф не аутентифицируют пользователя. Для исходящего и входящего трафика происходит фильтрация. МЭ анализирующие состояние сессии Такие МЭ являются пакетными фильтрами, которые считывают сохраняемый пакет 4-го уровня OSI. Плюсы МЭ четвертого уровня: Информацию могут узнать только установленные соединения Пф доступен для всех, остается в целостности ТСР-соединение Прокси-сервер прикладного уровня Если применять МЭ ПУ, тогда нам не потребуется устройство, чтобы выполнить маршрутизацию. Прокси-сервер, анализирующий точный протокол ПУ, называется агентом прокси. Такой МЭ имеют много преимуществ. Плюсы прокси-сервера ПУ: Прокси требует распознавание пользователя МЭ ПУ проанализирует весь сетевой пакет. Прокси ПУ создают детальные логи. Минусы прокси-сервера ПУ: МЭ использует больше времени при работе с пакетами рикладные прокси работают не со всеми сетевыми приложениями и протоколами Выделенные прокси-серверы Эти прокси-серверы считывают трафик определенного прикладного протокола и не анализируют его полностью. Прокси-серверы нужны для сканирования web и e-mail содержимого: отсеивание Java-приложений; отсеивание управлений ActiveX; отсеивание JavaScript; уничтожение вирусов; блокирование команд, определенных для приложений и пользователя, вместе с блокирование нескольких типов содержимого для точных пользователей.
img
Есть два типа алгоритмов шифрования, которые используются для шифрования данных. Это симметричные и асимметричные алгоритмы. В этой статье мы подробно изучим функции и операции алгоритмов симметричного шифрования. Чтобы зашифровать текстовое сообщение, требуются как шифр, так и ключ. При симметричном шифровании ключ используется для шифрования сообщения открытого текста в зашифрованный текст, и тот же ключ используется для дешифрования зашифрованного текста обратно в открытый текст. Хотя алгоритмы симметричного шифрования обычно используются во многих системах, основным недостатком является то, что в случае потери или кражи секретного ключа зашифрованный текст может быть взломан. Если злоумышленник сможет получить ключ, он сможет расшифровать сообщение и просмотреть его содержимое. Поэтому чрезвычайно важно, чтобы ключ всегда был в безопасности. Симметричные алгоритмы используют длину ключа в диапазоне от 40 до 256 бит. Эти длины ключей намного короче, чем те, которые используются в асимметричных алгоритмах. Однако симметричные алгоритмы способны обеспечить лучшую производительность, например, при более быстром шифровании данных, по сравнению с асимметричными алгоритмами. Чтобы лучше понять, как работают симметричные алгоритмы, давайте представим, что есть два пользователя, Алиса и Сергей Алексеевич, которые хотят обеспечить конфиденциальность сообщений, которыми они обмениваются. Оба пользователя знают о Pre-Shared Key (PSK) или секретном ключе до обмена сообщениями. На следующем рисунке демонстрируется, что Алиса использует секретный ключ для шифрования текстового сообщения перед его отправкой Сергею Алексеевичу: После того, как сообщение будет зашифровано, Алиса отправит его Сергею Алексеевичу, который будет использовать тот же PSK или секретный ключ, чтобы расшифровать сообщение и получить исходное текстовое сообщение, как показано ниже: Тот же процесс повторяется всякий раз, когда Сергей Алексеевич хочет отправить сообщение Алисе. Тот же ключ, который используется для шифрования данных, используется для дешифрования сообщения. Симметричные алгоритмы Симметричные алгоритмы могут шифровать данные, используя либо блочный шифр, либо потоковый шифр. Блочный шифр берет блок фиксированной длины открытого текстового сообщения и выполняет процесс шифрования. Эти блоки обычно являются 64-битными или 128-битными блоками. На следующем рисунке представлен блочный шифр: В свою очередь, потоковый шифр будет шифровать либо один бит, либо один байт за раз. Вместо того, чтобы шифровать весь блок открытого текста, представьте, что с помощью потокового шифра размер блока уменьшается до одного бита или одного байта. На следующем рисунке представлен потоковый шифр: Считается, что потоковые шифры выполняют шифрование данных быстрее, чем блочные шифры, поскольку они непрерывно шифруют данные по одному биту или одному байту за раз. Ниже приводится список симметричных алгоритмов и их характеристики: Data Encryption Standard (DES): это очень старый алгоритм симметричного шифрования, который шифрует данные с использованием блоков размером 64 бита и размером ключа 54 бита. Triple Data Encryption Standard (3DES): это более новая версия DES. 3DES выполняет процесс шифрования трижды. Это означает, что первый раунд берет данные открытого текста и выполняет шифрование для создания зашифрованного текста. Он будет использовать зашифрованный текст в качестве входных данных и снова выполнит его шифрование, что является вторым этапом. Он возьмет новый зашифрованный текст из второго раунда и выполнит его шифрование, чтобы создать окончательный результат, который завершает третий раунд шифрования, отсюда и название тройной DES. 3DES использует ключи размером 112 бит и 168 бит. Advanced Encryption Standard (AES): широко используется во многих современных системах передачи данных и протоколах. AES использует ключи размером 128, 192 и 256 бит. Он выполняет шифрование данных в блоках фиксированного размера: 128, 192 и 256 бит. AES считается намного более безопасным, чем алгоритмы шифрования DES и 3DES. Безопасный сетевой протокол Secure Shell (SSH) версии 2 использует алгоритм AES с режимом счетчика (AES-CRT) в качестве предпочтительного алгоритма шифрования данных. Software-Optimized Encryption Algorithm (SEAL): это еще один симметричный алгоритм. SEAL - это алгоритм потокового шифрования, который использует размер ключа 160 бит. Rivest Cipher (RC): это серия наборов шифров, созданных Роном Ривестом, таких как RC2, RC3, RC4, RC5 и RC6. Наиболее распространенным является RC4, потоковый шифр, использующий размер ключа до 256 бит. Асимметричные алгоритмы шифрования Асимметричные алгоритмы выполняют шифрование данных с использованием двух разных ключей в виде пары ключей. Это означает, что один ключ используется для шифрования данных, а другой-для расшифровки сообщения. Если какой-либо ключ потерян или украден, сообщение не будет взломано или прочитано. На следующем рисунке показан пользователь Алиса, использующий ключ для шифрования текстового сообщения: Когда целевой хост, Сергея Алексеевича, получает сообщение от отправителя, он будет использовать другой ключ для расшифровки сообщения, как показано на следующем рисунке: Асимметричные алгоритмы используют пару ключей, известную как открытый (public) и закрытый (private) ключи. Открытый ключ предоставляется любому, кто хочет связаться с вами, отсюда и название открытый ключ. Закрытый ключ хранится у вас. Только пользователи пары ключей могут шифровать и расшифровывать данные. Никакие другие ключи не могут быть использованы для расшифровки сообщения, зашифрованного вашим закрытым ключом. Важное примечание! Асимметричное шифрование использует размер ключа от 512 до 4096 бит. Однако рекомендуется размер ключа в 1024 бита или больше. Чтобы лучше понять принцип работы этих открытых и закрытых ключей, давайте представим, что есть два пользователя, Сергей Алексеевич и Алиса, которые хотят зашифровать данные между собой, используя асимметричное шифрование. Для начала предположим, что Алиса хочет отправить сообщение Сергею Алексеевичу. Для этого Сергей Алексеевич должен создать пару, открытого и закрытого ключей и поделиться открытым ключом с Алисой следующим образом: Закрытый ключ хранится у Сергея Алексеевича, а Алиса получает только открытый ключ Сергея Алексеевича. Алиса будет использовать открытый ключ Сергея Алексеевича для шифрования любого сообщения, которое она хочет отправить Сергею Алексеевичу. Когда Сергей Алексеевич получит сообщение, то он будет использовать свой закрытый ключ, чтобы расшифровать сообщение и прочитать его содержимое. На следующем рисунке показано, как Алиса отправляет Сергею Алексеевичу зашифрованное сообщение: Как показано на предыдущем рисунке, Алиса использовала открытый ключ Сергея Алексеевича для шифрования сообщения. Если злоумышленник перехватит зашифрованный текст во время передачи, сообщение будет в безопасности, поскольку злоумышленник не имеет закрытого ключа Сергея Алексеевича. Ниже приведены некоторые сетевые протоколы, использующие асимметричные алгоритмы: SSH Secure Sockets Layer (SSL) Internet Key Exchange (IKE) Pretty Good Privacy (PGP) Ниже приведен список асимметричных алгоритмов и их функции: Diffie-Hellman (DH): DH не является алгоритмом шифрования данных, а скорее используется для безопасной доставки пар ключей по незащищенной сети, такой как Интернет. Проще говоря, он позволяет Сергею Алексеевичу и Алисе согласовывать ключ, который может использоваться для шифрования сообщений, отправляемых между ними. DH использует ключи размером 512 бит, 1024 бит, 2048 бит, 3072 бит и 4096 бит. Ниже приведен список различных групп DH и их соответствующих размеров ключей: группа DH 1: 768 бит, группа 2 DH: 1024 бит, группа 5 DH: 1536 бит, группа 14 DH: 2048 бит, группа 15 DH: 3072 бит, и группа 16 DH: 4096 бит. Digital Signature Standard (DSS): DSS - это асимметричный алгоритм, который используется для цифровых подписей. Алгоритм цифровой подписи (DSA) - это алгоритм с открытым ключом, который использует схему подписи ElGamal. Размеры ключей варьируются от 512 до 1024 бит. Rivest-Shamir-Adleman (RSA): этот алгоритм шифрования был создан Ron Rivest, Adi Shamir, и Leonard Adleman. Он был разработан как алгоритм асимметричного шифрования, который использует пары открытого и закрытого ключей между устройствами. RSA использует ключи размером от 512 до 2048 бит. EIGamal: EIGamal - еще один алгоритм асимметричного шифрования, который использует пару открытого и закрытого ключей для шифрования данных. Этот алгоритм основан на процессе согласования ключей DH. Примечательной особенностью использования этого алгоритма является то, что он принимает открытый текст (input) и преобразует его в зашифрованный текст (output), который вдвое превышает размер входного сообщения. Elliptical Curve (EC): EC используется с асимметричным шифрованием. EC использует кривые вместо чисел. Поскольку мобильные устройства, такие как смартфоны, не имеют высокопроизводительного процессора и объема памяти, как компьютер, EC использует ключи меньшего размера.
img
При первичной настройке Asterisk или дальнейшей отладке очень часто может возникнуть потребность в совершении звонка без использования физического телефона или софтфона. К примеру, изменились настройки фаерволла, транка или экстеншена и необходимо при каждом изменении совершать тестовые исходящие звонки. Подобную функцию выполняет команда «Dial», но в данном случае необходимо создать так называемый «call» файл, просто текстовый файл, который содержит следующие строки: Channel: SIP/flowroute/84951112233 MaxRetries: 1 RetryTime: 60 WaitTime: 30 Context: test_forcall Extension: 1 Priority: 1 Set: variablename=variablevalue CallerID: Test <84954445566> Первая строчка определяет канал, который будет использоваться для совершения вызова и экстеншен, в данном случае – любой номер телефона, в данном примере 84951112233. Следующая строка – параметр, определяющий сколько раз Asterisk произведет попыток вызова на данный номер. Далее – временной интервал между вызовами и начальное время ожидания перед первым звонком. Параметр «Context» отвечает соответственно за контекст, через который пойдет вызов, экстеншен и приоритет. Кроме того, можно настроить CallerID (номер вызывающего абонента), в данном случае - Test <84954445566>. Для того, что бы Астериск прочел и использовал .call файл, его необходимо поместить в директорию /var/spool/asterisk/outgoing/ - важно, что он должен быть именно перемещён в неё с помощью команды «mv», а не создан в самой директории. Кроме того, необходимо, что бы Астериск имел достаточно прав для того, чтобы удалить этот файл после использования. Суммируя вышесказанное, необходимо: Создать .call файл с необходимым наполнением Настроить необходимые разрешения с помощью команды chmod chmod 777 callfile.call 3. Переместить файл в директорию для его исполнения командой mv mv callfile.call /var/spool/asterisk/outgoing/ Так как файл совершает вызов с использованием контекста, экстеншена и приоритета, ниже приведён пример контекста, который использовался для данного примера: [test_forcall] exten => 1,1,Answer() exten => 1,n,Record(/home/test/asterisk_sounds/rec/incoming_call.gsm,5,30) exten => 1,n,Playback(vm-goodbye) exten => 1,n,Hangup() В описании данного контекста нет никакой специфики, кроме того что необходимо зарегистрировать экстеншен с номером 1, так как через него идет вызов (.call файл в начале статьи). Если изменить дату создания .call файла, то Asterisk совершит вызов в указанный момент. Для этого используется команда touch, как указано ниже. touch -t YYYYMMDDHHMM.SS filename // формат использования команды touch -t echo date('YmdHi'); .00 callfile.call // изменение даты файла так, что Asterisk совершит вызов echo date('d'); function getMonthRus($num_month = false){ if(!$num_month){ $num_month = date('n'); } $monthes = array( 1 => 'января', 2 => 'февраля', 3 => 'марта', 4 => 'апреля', 5 => 'мая', 6 => 'июня', 7 => 'июля', 8 => 'августа',9 => 'сентября', 10 => 'октября', 11 => 'ноября', 12 => 'декабря' ); $name_month = $monthes[$num_month]; return $name_month; } echo getMonthRus(); echo date('Y'); года в echo date('H:i'); .Это если Вы решите позвонить прямо сейчас :) Если необходимо проверить список файлов, которые ожидают исполнения, необходимо ввести следующую команду: ls --full-time /var/spool/asterisk/outgoing/ Таким образом, можно генерировать файлы для совершения автодозвона в целях тестирования, в любое необходимое время – к примеру, можно проверять работоспособность АТС в критичные моменты.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59