По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
SSH расшифровывается как Secure Shell и представляет собой метод, используемый для установления безопасного соединения между двумя компьютерами. SSH работает путем аутентификации на основе пары ключей, причем закрытый ключ находится на удаленном сервере, а соответствующий открытый ключ - на локальной машине. Когда ключи совпадают, доступ предоставляется удаленному пользователю. Это руководство покажет вам, как сгенерировать пару ключей SSH в Windows 10, используя OpenSSH или PuTTY. Генерация ключа SSH в Windows 10 с помощью OpenSSH Client Шаг 1. Проверьте, установлен ли клиент OpenSSH Во-первых, проверьте, установлен ли у вас клиент OpenSSH: 1. Войдите в меню Параметры, и затем нажмите Приложения. 2. Во вкладке Приложения и возможности выберите Дополнительные компоненты. 3. Прокрутите список вниз, чтобы увидеть, есть ли в списке клиент OpenSSH. Если клиента нет, нажмите знак плюс рядом с Добавить компонент Прокрутите список, чтобы найти и выбрать OpenSSH Client. Нажмите Установить. Шаг 2. Откройте командную строку Нажмите клавишу Windows, в строке поиска введите cmd, в результатах нажните правой кнопкой на значок командной строки и выберите Запуск от имени администратора. Шаг 3. Использование OpenSSH для генерации пары ключей SSH 1. В командной строке введите следующее: ssh-keygen 2. По умолчанию система сохранит ключи в C:Usersyour_username.sshid_rsa. Вы можете использовать имя по умолчанию, или вы можете выбрать более осмысленные имена. Это может помочь различать ключи, если вы используете несколько пар ключей. Чтобы придерживаться опции по умолчанию, нажмите Enter. Если файл с таким именем уже существует, вам будет предложено перезаписать файл. 3. Вас попросят ввести кодовую фразу. Нажмите Enter, чтобы пропустить этот шаг. 4. Система сгенерирует пару ключей и отобразит отпечаток ключа и изображение randomart. 5. Откройте проводник 6. Перейдите к C:Usersyour_username.ssh. 7. Вы должны увидеть два файла. Идентификация сохраняется в файле id_rsa, а открытый ключ помечается как id_rsa.pub. Это ваша пара ключей SSH. Обычно открытый ключ идентифицируется расширением .pub. Вы можете использовать Блокнот, чтобы просмотреть содержимое как закрытого, так и открытого ключа. Генерация ключей SSH с помощью PuTTY До того, как OpenSSH был включен в Windows, инструмент PuTTY был золотым стандартом для генерации ключей SSH. Шаг 1: Установите PuTTY Скачайте PuTTY с оффициального сайта, затем дважды щелкните загруженный файл и следуйте указаниям мастера установки, чтобы завершить установку. Тут все просто, но если что, у нас есть подробное описание как скачать и установить PuTTY Шаг 2: Запустите генератор ключей PuTTY SSH 1. Откройте меню Пуск 2. Введите puttygen. 3. В результатах щелкните правой кнопкой мыши на PuTTYgen и нажмите Запуск от имени администратора. Шаг 3: Используйте PuTTY для создания пары ключей SSH Процесс, описанный ниже, сгенерирует ключи RSA, классический и широко используемый тип алгоритма шифрования. Инструмент PuTTY keygen предлагает несколько других алгоритмов - DSA, ECDSA, Ed25519 и SSH-1 (RSA). Если вам требуется другой алгоритм шифрования, выберите нужную опцию в разделе Parameters перед созданием пары ключей. 1. В окне PuTTY Key Generator нажмите Generate. 2. Переместите курсор в серое поле, чтобы заполнить зеленую полосу. 3. Сохраните открытый ключ: Нажмите кнопку Save public key. Выберите место для сохранения ключа. Дайте ключу имя (например, putty_key.pub) 4. Сохраните закрытый ключ: Откройте меню Conversions наверху. Нажмите Export OpenSSH key. Вас спросят, хотите ли вы сохранить ключ без ключевой фразы. Нажмите Да. Выберите место для сохранения ключа (обычно это та же папка, что и открытый ключ). Дайте ключу имя (например, putty_key). Использование ваших ключей SSH Чтобы использовать ваши ключи SSH, скопируйте ваш открытый ключ SSH в систему, к которой вы хотите подключиться. Используйте свой личный ключ SSH в своей системе. Ваш закрытый ключ будет соответствовать открытому ключу и предоставит доступ.
img
Продолжаем рассказывать про механизмы QoS (Quality of Service) . Мы уже рассказаывали про то, какие проблемы могут быть в сети и как на них может повлиять QoS. В этой статье мы поговорим про механизмы работы QoS. Механизмы QoS В связи с тем, что приложения могут требовать различные уровни QoS, возникает множество моделей и механизмов, чтобы удовлетворить эти нужды. Рассмотрим следующие модели: Best Effort –негарантированная доставка используется во всех сетях по умолчанию. Положительная сторона заключается в том, что эта модель не требует абсолютно никаких усилий для реализации. Не используются никакие механизмы QoS, весь трафик обслуживается по принципу “пришел первым – обслужили первым”. Такая модель не подходит для современных сетевых сред; Integrated Services (IntServ) – эта модель интегрированного обслуживания использует метод резервирования. Например, если пользователь хотел сделать VoIP вызов 80 Кбит/с по сети передачи данных, то сеть, разработанная исключительно для модели IntServ, зарезервировала бы 80 Кбит/с на каждом сетевом устройстве между двумя конечными точками VoIP, используя протокол резервирования ресурсов RSVP (Resource Reservation Protocol) . На протяжении звонка эти 80 Кбит/с будут недоступны для другого использования, кроме как для VoIP звонка. Хотя модель IntServ является единственной моделью, обеспечивающей гарантированную пропускную способность, она также имеет проблемы с масштабируемостью. Если сделано достаточное количество резервирований, то сеть просто исчерпает полосу пропускания; Differentiated Services (DiffServ) – модель дифференцированного обслуживания является самой популярной и гибкой моделью для использования QoS. В этой модели можно настроить каждое устройство так, чтобы оно могло использовать различные методы QoS, в зависимости от типа трафика. Можно указать какой трафик входит в определенный класс и как этот класс должен обрабатываться. В отличие от модели IntServ, трафик не является абсолютно гарантированным, поскольку сетевые устройства не полностью резервируют полосу пропускания. Однако DiffServ получает полосу, близкую к гарантированной полосе пропускания, в то же время решая проблемы масштабируемости IntServ. Это позволило этой модели стать стандартной моделью QoS; Инструменты QoS Сами механизмы QoS представляют собой ряд инструментов, которые объединяются для обеспечения уровня обслуживания, который необходим трафику. Каждый из этих инструментов вписывается в одну из следующих категорий: Классификация и разметка (Classification and Marking) - Эти инструменты позволяют идентифицировать и маркировать пакет, чтобы сетевые устройства могли легко идентифицировать его по мере пересечения сети. Обычно первое устройство, которое принимает пакет, идентифицирует его с помощью таких инструментов, как списки доступа (access-list), входящие интерфейсы или deep packet inspection (DPI), который рассматривает сами данные приложения. Эти инструменты могут быть требовательны к ресурсам процессора и добавлять задержку в пакет, поэтому после того как пакет изначально идентифицирован, он сразу помечается. Маркировка может быть в заголовке уровня 2 (data link), позволяя коммутаторам читать его и/или заголовке уровня 3 (network), чтобы маршрутизаторы могли его прочитать. Для второго уровня используется протокол 802.1P, а для третьего уровня используется поле Type of Service. Затем, когда пакет пересекает остальную сеть, сетевые устройства просто смотрят на маркировку, чтобы классифицировать ее, а не искать глубоко в пакете; Управление перегрузками (Congestion Management)– Перегрузки возникают, когда входной буфер устройства переполняется и из-за этого увеличивается время обработки пакета. Стратегии очередей определяют правила, которые маршрутизатор должен применять при возникновении перегрузки. Например, если интерфейс E1 WAN был полностью насыщен трафиком, маршрутизатор начнет удерживать пакеты в памяти (очереди), чтобы отправить их, когда станет доступна полоса пропускания. Все стратегии очередей направлены на то, чтобы ответить на один вопрос: “когда есть доступная пропускная способность, какой пакет идет первым?“; Избегание заторов (Congestion Avoidance) – Большинство QoS механизмов применяются только тогда, когда в сети происходит перегрузка. Целью инструментов избегания заторов является удаление достаточного количества пакетов несущественного (или не очень важного) трафика, чтобы избежать серьезных перегрузок, возникающих в первую очередь; Контроль и шейпинг (Policing and Shaping) – Этот механизм ограничивает пропускную способность определенного сетевого трафика. Это полезно для многих типичных «пожирателей полосы» в сети: p2p приложения, веб-серфинг, FTP и прочие. Шейпинг также можно использовать, чтобы ограничить пропускную способность определенного сетевого трафика. Это нужно для сетей, где допустимая фактическая скорость медленнее физической скорости интерфейса. Разница между этими двумя механизмами заключается в том, что shaping формирует очередь из избыточного трафика, чтобы выслать его позже, тогда как policing обычно сбрасывает избыточный трафик; Эффективность линков (Link Efficiency) – Эта группа инструментов сосредоточена на доставке трафика наиболее эффективным способом. Например, некоторые низкоскоростные линки могут работать лучше, если потратить время на сжатие сетевого трафика до его отправки (сжатие является одним из инструментов Link Efficiency); Механизмы Link Efficiency При использовании медленных интерфейсов возникают две основных проблемы: Недостаток полосы пропускания затрудняет своевременную отправку необходимого объема данных; Медленные скорости могут существенно повлиять на сквозную задержку из-за процесса сериализации (количество времени, которое маршрутизатору требуется на перенос пакета из буфера памяти в сеть). На этих медленных линках, чем больше пакет, тем дольше задержка сериализации; Чтобы побороть эти проблемы были разработаны следующие Link Efficiency механизмы: Сжатие полезной нагрузки (Payload Compression) – сжимает данные приложения, оправляемые по сети, поэтому маршрутизатор отправляет меньше данных, по медленной линии; Сжатие заголовка (Header Compression) – Некоторый трафик (например, такой как VoIP) может иметь небольшой объем данных приложения (RTP-аудио) в каждом пакете, но в целом отправлять много пакетов. В этом случае количество информации заголовка становится значимым фактором и часто потребляет больше полосы пропускания, чем данные. Сжатие заголовка решает эту проблему напрямую, устраняя многие избыточные поля в заголовке пакета. Удивительно, что сжатие заголовка RTP, также называемое сжатым транспортным протоколом реального времени (Compressed Real-time Transport Protocol - cRTP) уменьшает 40-байтовый заголовок до 2-4 байт!; Фрагментация и чередование (Link Fragmentation and Interleaving) - LFI решает проблему задержки сериализации путем измельчения больших пакетов на более мелкие части до их отправки. Это позволяет маршрутизатору перемещать критический VoIP-трафик между фрагментированными частями данных (которые называются «чередованием» голоса); Алгоритмы очередей Постановка в очереди (queuing) определяет правила, которые маршрутизатор должен применять при возникновении перегруженности. Большинство сетевых интерфейсов по умолчанию используют базовую инициализацию First-in, First-out (FIFO) . В этом методе сначала отправляется любой пакет, который приходит первым. Хотя это кажется справедливым, не весь сетевой трафик создается равным. Основная задача очереди - обеспечить, чтобы сетевой трафик, обслуживающий критически важные или зависящие от времени бизнес-приложения, отправлялся перед несущественным сетевым трафиком. Помимо очередности FIFO используются три первичных алгоритма очередности: Weighted Fair Queuing (WFQ)– WFQ пытается сбалансировать доступную полосу пропускания между всеми отправителями равномерно. Используя этот метод, отправитель с высокой пропускной способностью получает меньше приоритета, чем отправитель с низкой пропускной способностью; Class-Based Weighted Fair Queuing (CBWFQ) – этот метод массового обслуживания позволяет указать гарантированные уровни пропускной способности для различных классов трафика. Например, вы можете указать, что веб-трафик получает 20 процентов полосы пропускания, тогда как трафик Citrix получает 50 процентов пропускной способности (вы можете указать значения как процент или конкретную величину полосы пропускания). Затем WFQ используется для всего неуказанного трафика (остальные 30 процентов в примере); Low Latency Queuing (LLQ) - LLQ часто упоминается как PQ-CBWFQ, потому работает точно так же, как CBWFQ, но добавляется компонент приоритета очередей (Priority Queuing - PQ). Если вы указываете, что определенный сетевой трафик должен идти в приоритетную очередь, то маршрутизатор не только обеспечивает пропускную способность трафика, но и гарантирует ему первую полосу пропускания. Например, используя чистый CBWFQ, трафику Citrix может быть гарантированно 50% пропускной способности, но он может получить эту полосу пропускания после того, как маршрутизатор обеспечит некоторые другие гарантии трафика. При использовании LLQ приоритетный трафик всегда отправляется перед выполнением любых других гарантий. Это очень хорошо работает для VoIP, делая LLQ предпочтительным алгоритмом очередей для голоса; Существует много других алгоритмов для очередей, эти три охватывают методы, используемые большинством современных сетей
img
Перед начало убедитесь, что ознакомились с материалом про построение деревьев в сетях. Правило кратчайшего пути, является скорее отрицательным, чем положительным экспериментом; его всегда можно использовать для поиска пути без петель среди набора доступных путей, но не для определения того, какие другие пути в наборе также могут оказаться свободными от петель. Рисунок 4 показывает это. На рисунке 4 легко заметить, что кратчайший путь от A до пункта назначения проходит по пути [A, B, F]. Также легко заметить, что пути [A, C, F] и [A, D, E, F] являются альтернативными путями к одному и тому же месту назначения. Но свободны ли эти пути от петель? Ответ зависит от значения слова "без петель": обычно путь без петель - это такой путь, при котором трафик не будет проходить через какой-либо узел (не будет посещать какой-либо узел в топологии более одного раза). Хотя это определение в целом хорошее, его можно сузить в случае одного узла с несколькими следующими переходами, через которые он может отправлять трафик в достижимый пункт назначения. В частности, определение можно сузить до: Путь является свободным от петель, если устройство следующего прыжка не пересылает трафик к определенному месту назначения обратно ко мне (отправляющему узлу). В этом случае путь через C, с точки зрения A, можно назвать свободным от петель, если C не пересылает трафик к месту назначения через A. Другими словами, если A передает пакет C для пункта назначения, C не будет пересылать пакет обратно к A, а скорее пересылает пакет ближе к пункту назначения. Это определение несколько упрощает задачу поиска альтернативных путей без петель. Вместо того, чтобы рассматривать весь путь к месту назначения, A нужно только учитывать, будет ли какой-либо конкретный сосед пересылать трафик обратно самому A при пересылке трафика к месту назначения. Рассмотрим, например, путь [A, C, F]. Если A отправляет пакет C для пункта назначения за пределами F, переправит ли C этот пакет обратно в A? Доступные пути для C: [C, A, B, F], общей стоимостью 5 [C, A, D, E], общей стоимостью 6 [C, F], общей стоимостью 2 Учитывая, что C собирается выбрать кратчайший путь к месту назначения, он выберет [C, F] и, следовательно, не будет пересылать трафик обратно в A. Превращая это в вопрос: почему C не будет перенаправлять трафик обратно в A? Потому что у него есть путь, стоимость которого ниже, чем у любого пути через A до места назначения. Это можно обобщить и назвать downstream neighbor: Любой сосед с путем, который короче локального пути к месту назначения, не будет возвращать трафик обратно ко мне (отправляющему узлу). Или, скорее, учитывая, что локальная стоимость представлена как LC, а стоимость соседа представлена как NC, тогда: Если NC LC, то тогда neighbor is downstream. Теперь рассмотрим второй альтернативный путь, показанный на рисунке 4: [A, D, E, F]. Еще раз, если A отправляет трафик к пункту назначения к D, будет ли D зацикливать трафик обратно к A? Имеющиеся у D пути: [D, A, C, F], общей стоимостью 5 [D, A, B, F], общей стоимостью 4 [D, E, F], общей стоимостью 3 Предполагая, что D будет использовать кратчайший доступный путь, D будет пересылать любой такой трафик через E, а не обратно через A. Это можно обобщить и назвать альтернативой без петель (Loop-Free Alternate -LFA): Любой сосед, у которого путь короче, чем локальный путь к месту назначения, плюс стоимость доступа соседа ко мне (локальный узел), не будет возвращать трафик обратно ко мне (локальному узлу). Или, скорее, учитывая, что локальная стоимость обозначена как LC, стоимость соседа обозначена как NC, а стоимость обратно для локального узла (с точки зрения соседа) - BC: Если NC + BC LC, то сосед - это LFA. Есть две другие модели, которые часто используются для объяснения Loop-Free Alternate: модель водопада и пространство P/Q. Полезно посмотреть на эти модели чуть подробнее. Модель водопада (Waterfall (or Continental Divide) Model). Один из способов предотвратить образование петель в маршрутах, рассчитываемых плоскостью управления, - просто не объявлять маршруты соседям, которые пересылали бы трафик обратно мне (отправляющему узлу). Это называется разделенным горизонтом (split horizon). Это приводит к концепции трафика, проходящего через сеть, действующую как вода водопада или вдоль русла ручья, выбирая путь наименьшего сопротивления к месту назначения, как показано на рисунке 5. На рисунке 5, если трафик входит в сеть в точке C (в источнике 2) и направляется за пределы E, он будет течь по правой стороне кольца. Однако, если трафик входит в сеть в точке A и предназначен для выхода за пределы E, он будет проходить по левой стороне кольца. Чтобы предотвратить зацикливание трафика, выходящего за пределы E, в этом кольце, одна простая вещь, которую может сделать плоскость управления, - это либо не позволить A объявлять пункт назначения в C, либо не позволить C объявлять пункт назначения в A. Предотвращение одного из этих двух маршрутизаторов от объявления к другому называется разделенным горизонтом (split horizon), потому что это останавливает маршрут от распространения через горизонт, или, скорее, за пределами точки, где любое конкретное устройство знает, что трафик, передаваемый по определенному каналу, будет зациклен. Split horizon реализуется только за счет того, что устройству разрешается объявлять о доступности через интерфейсы, которые оно не использует для достижения указанного пункта назначения. В этом случае: D использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E C использует D для достижения пункта назначения, поэтому он не будет объявлять о доступности D B использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E A использует B для достижения пункта назначения, поэтому он не будет объявлять о доступности B Следовательно, A блокирует B от знания альтернативного пути, который он имеет к месту назначения через C, а C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петель пересекает этот разделенный горизонт. точка в сети. На рис. 12-5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направляемый в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. C, в терминах LFA, является нижестоящим соседом A. Следовательно, A блокирует B от знания об альтернативном пути, который он имеет к месту назначения через C, и C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петли будет пересекать эту точку split horizon в сети. На рисунке 5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направленный в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. В терминах LFA, С является нижестоящим соседом (downstream neighbor) A. P/Q пространство Еще одна модель, описывающая, как работают LFA, - это пространство P / Q. Рисунок 6 иллюстрирует эту модель. Проще всего начать с определения двух пространств. Предполагая, что линия связи [E, D] должна быть защищена от сбоя: Рассчитайте Shortest Path Tree из E (E использует стоимость путей к себе, а не стоимость от себя, при вычислении этого дерева, потому что трафик течет к D по этому пути). Удалите линию связи [E,D] вместе с любыми узлами, доступными только при прохождении через эту линию. Остальные узлы, которых может достичь E, - это пространство Q. Рассчитайте Shortest Path Tree из D. Удалите канал [E, D] вместе со всеми узлами, доступными только при прохождении по линии. Остальные узлы, которых может достичь D, находятся в пространстве P. Если D может найти маршрутизатор в пространстве Q, на который будет перенаправляться трафик в случае отказа канала [E, D]- это LFA. Удаленные (remote) Loop-Free Alternates Что делать, если нет LFA? Иногда можно найти удаленную альтернативу без петель (remote Loop-Free Alternate - rLFA), которая также может передавать трафик к месту назначения. RLFA не подключен напрямую к вычисляющему маршрутизатору, а скорее находится на расстоянии одного или нескольких переходов. Это означает, что трафик должен передаваться через маршрутизаторы между вычисляющим маршрутизатором и remote next hop. Обычно это достигается путем туннелирования трафика. Эти модели могут объяснить rLFA, не обращая внимания на математику, необходимую для их расчета. Понимание того, где кольцо "разделится" на P и Q, или на две половины, разделенные split horizon, поможет вам быстро понять, где rLFA можно использовать для обхода сбоя, даже если LFA отсутствует. Возвращаясь к рисунку 6, например, если канал [E, D] выходит из строя, D должен просто ждать, пока сеть сойдется, чтобы начать пересылку трафика к месту назначения. Лучший путь от E был удален из дерева D из-за сбоя, и E не имеет LFA, на который он мог бы пересылать трафик. Вернитесь к определению loop-free path, с которого начался этот раздел-это любой сосед, к которому устройство может перенаправлять трафик без возврата трафика. Нет никакой особой причины, по которой сосед, которому устройство отправляет пакеты в случае сбоя локальной линии связи, должен быть локально подключен. В разделе "виртуализация сети" описывается возможность создания туннеля или топологии наложения, которая может передавать трафик между любыми двумя узлами сети. Учитывая возможность туннелирования трафика через C, поэтому C пересылает трафик не на основе фактического пункта назначения, а на основе заголовка туннеля, D может пересылать трафик непосредственно на A, минуя петлю. Когда канал [E, D] не работает, D может сделать следующее: Вычислите ближайшую точку в сети, где трафик может быть туннелирован и не вернется к самому C. Сформируйте туннель к этому маршрутизатору. Инкапсулируйте трафик в заголовок туннеля. Перенаправьте трафик. Примечание. В реальных реализациях туннель rLFA будет рассчитываться заранее, а не рассчитываться во время сбоя. Эти туннели rLFA не обязательно должны быть видимы для обычного процесса пересылки. Эта информация предоставлена для ясности того, как работает этот процесс, а не сосредоточен на том, как он обычно осуществляется. D будет перенаправлять трафик в пункт назначения туннеля, а не в исходный пункт назначения - это обходит запись локальной таблицы переадресации C для исходного пункта назначения, что возвращает трафик обратно в C. Расчет таких точек пересечения будет обсуждаться в чуть позже в статьях, посвященных первому алгоритму кратчайшего пути Дейкстры.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59