По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Windows включает в себя надежный (в целом 🙄), но простой в использовании, брандмауэр с расширенными возможностями. А с помощью PowerShell 7 можно легко настроить его из командной строки. В этой статье описываются общие команды, используемые в межсетевом экране Windows, а также возможные способы их использования. Модуль NetSecurity хорошо задокументирован. Учтите, что эта статья относится только к операционной системе Windows. Для других операционных систем существуют другие инструменты командной строки, которые могут использоваться для выполнения тех же задач, такие как UFW или IPTables в Linux. Вызов модуля NetSecurity Предустановленный в системе модуль NetSecurity обладает всем необходимым функционалом для управления правилами межсетевого экрана Windows. Чтобы задействовать данный модуль, достаточно импортировать его показанным ниже способом (конечно же команду запускаем в PowerShell): Import-Module -Name 'NetSecurity' Вывод списка правил Командлет Get-NetFirewallRule выводит список настроенных правил. В системе большое количество предварительно настроенных правил, но для примера мы выбрали первые 10: Get-NetFirewallRule | Select-Object DisplayName, Enabled, Direction, Action -First 10 По умолчанию, командлет выводит все параметры, но на примере выше мы выбрали всего четыре из них (они, собственно, перечислены в команде). А получить все параметры можно командой: Get-NetFirewallRule | Select-Object * -First 1 Создание нового правила Создать новое правило позволяет команда New-NetFirewallRule. Основные параметры, которые нужно передать команде следующие: DisplayName - название правила; Direction - Направление трафика, которое нужно блокировать. Может быть либо входящим (Inbound), либо Исходящим (Outbound); Action - Действие правила. Правило может быть либо Разрешающим (Allow), либо Запрещающим (Block). $Params = @{ "DisplayName" = 'Block WINS' "Direction" = 'Inbound' "Action" = 'Block' "RemoteAddress" = 'WINS' } New-NetFirewallRule @Params Если не указан параметр Name, система сгенерирует случайный GUID. DisplayName может быть читабельным, но сам Name будет сгенерирован случайным образом. Изменение существующего правила Что если нужно изменить какой-то параметр правила, не удаляя и пересоздавая его? Для этого нужно задействовать командлет Set-NetFirewallRule. $Params = @{ "DisplayName" = 'Block WINS' "Action" = 'Allow' } Set-NetFirewallRule @Params Данная команда также позволяет вносить изменения в несколько правил сразу. Это можно сделать, передав команде одно из трех параметров правила: Name - Параметр по умолчанию. Если команде переданы несколько параметров Name в виде строки или же через пайплайн (|), изменения коснутся каждого из правил; DisplayName - так же, как и в случае с параметром Name, команде можно передать нескольких правил, чтобы изменить их; DisplayGroup или Group - Если несколько правил сгруппированы, то команде можно передать название этой группы и внести изменения во все члены указанной группы. Удаление правила И, наконец, мы хотим удалить правило, которое больше не нужно. Для этого запускаем командлет Remove-NetFirewallRule. Также при удалении часто рекомендуется использовать параметр WhatIf, который позволяет убедиться в том, что будет удалено нужное правило. Remove-NetFirewallRule -DisplayName "Block WINS" Следует отметить, что данный командлет позволяет удалять несколько правил сразу. На примере ниже мы удаляем все отключенные правила, которые содержит групповая политика firewall_gpo в домене ad.local.test. Remove-NetFirewallRule -Enabled 'False' -PolicyStore 'ad.local.test\firewall_gpo' Запущенный сам по себе командлет Remove-NetFirewallRule достаточно полезный, но в то же время опасный, так как удаляет все локально созданные правила. Если есть доменная групповая политика, определяющая правила межсетевого экрана, данная команда удалит все локальные правила, конфликтующие с правилами групповой политики. Дополнительные возможности Модуль NetSecurity включает в себя множество других команд, которые мы не затронули в данной статье. Поэтому ниже приводим список и возможности данных команд. Copy-NetFirewallRule - данная команда копирует существующее правило и все связанные с ними фильтры в то же или другое хранилище политик; Disable-NetFirewallRule - отключает ранее созданное правило. Отключенное правило не удаляется из базы, но уже никак не влияет на трафик. Если запустить эту команду без параметров, то она отключит все активные правила на целевой машине. Поэтому если не указано конкретное правило или группа правил, рекомендуется всегда запускать данную команду с параметром WhatIf; Enable-NetFirewallRule - в противовес предыдущей команде, данный командлет включает все отключенные правила. Если не указано конкретное правило, то данную команду также рекомендуется запускать с параметром WhatIf; Get-NetFirewallProfile - эта команда отображает параметры, настроенные для указанного профиля, например, профилей Domain, Private или Public; Get-NetFirewallSettings - глобальные параметры брандмауэра можно получить с помощью команды Get-NetFirewallSettings. Это такие параметры, как параметры сертификатов, организация очередей пакетов или списки авторизации; Rename-NetFirewallRule - данная команда позволяет переименовать существующее правило. Это полезно, если правило было создано без указания имени, таким образом получив случайный GUID в качестве название, и предпочтительно назначить читабельное название; Set-NetFirewallProfile - для установки определенных параметров отдельных профилей можно использовать команду Set-NetFirewallProfile. Это позволяет каждому профилю иметь различные настройки; Set-NetFirewallSettings - позволяет настроить поведение межсетевого экрана независимо от используемого профиля сети; Show-NetFirewallRule - эта вспомогательная команда отображает правила брандмауэра и связанные с ними объекты в виде отформатированного списка. Данный модуль также включает расширенные возможности для управления IPSec. Указанные выше команды управляют стандартными настройками межсетевого экрана Windows. Заключение Существует множество команд для управления межсетевым экраном Windows. В этой статье рассматриваются только некоторые из них, наиболее важные команды для быстрого вывода списка, создания, изменения и удаления правил брандмауэра. Но с помощью модуля NetSecurity можно сделать настройки и посложнее.
img
Цель данной статьи, чтобы разобраться с тем как поправить незначительные ошибки, возникающие в файловых системах. Файловых систем много, поэтому много различных инструментов для работы с ними. Поэтому будет рассказано об основных инструментах к основным стандартным системам Linux. И рассмотрим несколько инструментов к рекомендованным LPIC файловым системам. Рассмотрим, так же журналируемые файловые системы и посмотрим индексные дескрипторы. Проверка целостности файловой системы; Проверка свободного пространства и индексных дескрипторов в файловой системе; Исправление проблем файловой системы. Список утилит: df, du, fsck, debugfs – общие утилиты для всех Linux систем mke2fs, e2fsck, dumpe2fs, tune2fs – утилиты для файловой системы ext xfs_check, xfs_repair, xfs_info, xfs_metadump – утилиты для файловой системы xfs Совершенно понятно, что для других файловых систем есть свои утилиты для работы с данными файловыми сиcтемами. Первая утилита df: man df Данная утилита показывает использование дискового пространства. У данной утилиты достаточно много ключей. Её особенностью является то, что она показывает дисковое пространство в 1 кбайт блоках. Данные цифры не очень понятны и удобны, для того чтобы было удобно можно использовать ключ –h и тогда вид станет удобно читаемым. В выводе команды мы сразу видим размер, сколько использовано, процент использование и точка монтирования. Как мы видим на новом перемонтированном разделе /dev/sdc1 занят 1% дискового пространства. Если посмотреть в папку монтирования раздела, то мы увидим там папку lost+found. Данная папка пуста, но занимает 37 МБ. Есть такое понятие индексные дескрипторы в журналируемых файловых системах inode. Inode – это метка идентификатора файла или по другому индексный дескриптор. В этих индексных дескрипторах хранится информация о владельце, типе файла, уровне доступа к нему. И нужно понимать, что для каждого файла создается свой отдельный inode. Команда df –I может показать нам inode. Число, например, inode напротив /dev/sda2 показывает сколько inode всего может быть на устройстве, далее сколько используется и сколько свободно. Обычно под inode отдается примерно 1% жесткого диска. И получается, что больше чем число inode на устройстве файлов и папок быть не может. Количество inode зависит от типа файловой системы. Далее мы рассмотрим, как пользоваться inode. Следующая команда du man du Данная команда показывает, что и сколько занимает у нас места на жестком диске, а именно размер папок в текущей директории. Если посмотреть вывод данной команды без ключей, то мы увидим список папок в текущей директории и количество блоков, с которым очень неудобно работать. Чтобы перевести данные блоки в человеческий вид, то необходимо дать ключ –h. А для еще большего удобства, можно установить замечательную утилиту ncdu простой командой. sudo apt install ncdu –y После установки нужно запустить ncdu. И мы увидим очень красивую картинку. Но вернемся к стандартной утилите du. С помощью данной утилиты мы можем указать в какой папке необходим просмотр папок и вывод их размера. du –h /home К сожалению данная утилита умеет взвешивать вес только каталогов и не показывает размер файлов. Для того, чтобы посмотреть размер файлов, мы конечно же можем воспользоваться командой ls –l. А также если мы запустим данную команду с ключем –i мы увидим номера inode файлов. Как вы видите у каждой папки и у каждого файла есть свой индексный дескриптор. Далее команды, которые нам позволят проверить целостность файловой системы. Команда fsck man fsck Как написано в описании утилиты она позволяет проверять и чинить Linux файловую систему. Мы можем видеть, например, в oперационной системе Windows, что в случае некорректного завершения работы операционной системы, операционная система запускает утилиту проверки целостности checkdisk. В случае необходимости данная утилита исправляет найденные ошибки в файловой системе. Следовательно, в Linux данные операции выполняет утилита fsck, причем может работать с различными файловыми системами Linux операционных систем. Мы можем попробовать воспользоваться утилитой fsck /dev/sdc1. В ответ от операционной системы мы получим следующее: Как мы видим операционная система вернула в ответ на команду для работы с данным разделом, что данный раздел с монтирован и операция прервана. Аналогичную ситуацию мы будем наблюдать в операционной системе Windows, если мы будем пытаться рабочий раздел проверить на ошибки. Т.е возникнет следующая ситуация. Если мы будем проверять дополнительный логический диск, где не установлена операционная система Windows, то данный раздел на время проведения тестов будет отключен и будут идти проверки. А если мы попытаемся проверить основной раздел, куда установлена операционная система Windows, то операционная система не сможет запустить данную утилиту и попросит перезагрузиться для запуска данной утилиты. В нашем случае придется делать точно так же. Поэтому, чтобы проверить необходимо отключить (от монтировать раздел) и после уже этого запускать утилиту. Из вывода можно заметить утилита пыталась запустить другую утилиту e2fsck, которая в данном случае отвечает за проверку файловых систем extext2ext3ext4. О чем достаточно подробно написано в описании данной утилиты. По сути fsck запускает утилиту ту, которая идет в пакете утилит для конкретной файловой системы. Бывает такое, что fsck не может определить тип файловой системы. Для того, чтобы утилита все-таки проверила файловую систему, необходимо отмонтировать логический раздел. Воспользуемся командой umount /mnt. И запускаем непосредственно саму проверку fsck –t ext4 /dev/sdc1 Проходит проверка моментально. Команда fsck запустилась и запустила необходимую утилиту для файловой системы. По результатам проверки файловая система чистая, найдено 11 файлов и 66753 блока. При обнаружении проблем, утилита предложила нам исправить. Для того, чтобы посмотреть на проверку другой файловой системы, необходимо переформатировать раздел. mkfs –t xfs –f /dev/sdc1 При попытке запуска проверки без указания типа файловой системы fsck /dev/sdc1 Как мы видим, утилита fsck отказалась проверять или вызывать утилиту, а явно указала на ту которую необходимо использовать в данном случае. Для проверки используем xfs_ncheck /dev/sdc1. А для починки файловой системы xfs_repair /dev/sdc1. Перемонтируем обратно наш раздел mount /dev/sdc1 /mnt Теперь можно получить информацию по разделу xfs_info /dev/sdc1 Или сделать дамп файловой системы xfs_metadump /dev/sdc1 dump.db Переформатируем файловую систему ext4 на разделе обратно /dev/sdc1. Перемонтируем в папку mnt. Создадим текстовый файл с текстом на данном разделе nano /mnt/test.txt Далее мы можем посмотреть следующую утилиту man debugfs. Данная утилита умеет очень многое: очень много ключей и различных опций. Чистит, удаляет, чинит, работает с inodes. Зайти в данную утилиту можно debugfs –w /dev/sdc1. Набираем help и видим кучу опций. Можно попросить данную утилиту вывести содержимое нашего тома. ls В результате данной команды мы увидим 2 объекта с номерами их inode. Теперь мы можем сказать rm test.txt и файл будет удален, точнее не сам файл а его индексный дескриптор., если посмотреть опять с помощью команды ls. То будет видно, что количество объектов не изменилось. Следовательно, мы этот файл в журналируемых файловых системах можем восстановить, восстановив его индексный дескриптор. Но только до тех пор, пока на место удаленного файла не был записан другой. Именно поэтому если требуется восстановление информации на диске, рекомендуется немедленно отключить ПК и после этого отдельно подключать носитель информации для процедуры восстановления. Так же на данном принципе основано сокрытие информации в Информационной безопасности, когда на носитель информации в 2 или 3 прохода записываются псевдослучайные данные. Для восстановления данных мы можем использовать команду lsdel. Данная команда показывает удаленные файлы. В принципе на данном debugfs и основаны многие программы для восстановления данных. На скриншоте хорошо видно, что был удален 1 inode с номером 12 дата и время, другие параметры. Для выхода используем q. Для восcтановления используем undel test.txt, команда, номер индексного дескриптора и имя файла с которым оно восстановится. Убедиться, что файл на месте можно с помощью команды ls. Утилита debagfs помогает восстанавливать файлы и вообще работать с файловой системой на низком уровне. Конечно восстанавливать по 1 файлу, это очень трудозатратно. Поэтому вот эти низкоуровневые утилиты используют более современные программы. Еще одна утилита dumpe2fs. Можно вызвать справку по данной утилите man dumpe2fs Данная команда делает дамп информации, которая хранится на данных томах. Выполним данную команду для /dev/sdc1 Мы получим следующий вывод информации. Данный вывод был сделан на стандартный вывод – т.е экран. Сделаем вывод в файл, например: dumpe2fs /dev/sdc1 > /tmp/output.txt Мы можем просмотреть информацию в выведенную в файл поэкранно с помощью less /tmp/output.txt В выводе мы сможем увидеть основные опции данной файловой системы. Переделаем файловую систему, текущую ext4 в ext2. Это можно сделать 3-мя способами с помощью утилит: mkfs, mke2fs, mkfs.ext2. Перед переформатирование необходимо отмонтировать файловую систему. После форматирования и перемонтируем. Опять снимаем дамп и передаем по конвееру на команду grep чтобы посмотреть features. Получаем следующее: dumpe2fs /dev/sdc1 | grep features И видим, что файловые системы отличаются, более новая файловая система имеет фишку журналирования has_jounal. Данная опция так же присутствует в ext3. Т.е в данных файловых системах имеются журналы с помощью которых удобно восстанавливать. Есть интересная утилита tune2fs – настраивать файловую систему. man tune2fs Данная утилита, как следует из описания настраивает настраиваемые параметры файловых систем. Например, у нас есть не журналируемая файловая система ext2. Мы даем команду tune2fs –O has_journal /dev/sdc1. Данная утилита добавляет опцию ведения журнала к файловой системе ext2. Или можем наоборот сказать удалить опцию поставив значок ^.
img
В настоящее время происходит рост потребности повышения уровня информатизации и увеличения количества узлов беспроводного доступа, особенно в информационно-коммуникационных технологиях. Пользователи, успешно использующие беспроводные информационные ресурсы, могут всегда и в любое время работать над самыми разными задачами, гораздо более эффективно, по сравнению с теми, кто до сих пор остаётся заложниками кабельных соединений для компьютерных сетей благодаря тому, что напрямую зависят от строго запланированной телекоммуникационной инфраструктуры. Беспроводные сети по сравнению с традиционными проводными решениями имеют преимущества, такие как: Просто создать и легко реализовать; Гибкость всей сети на уровне архитектуры, когда есть возможность изменения топологии сети без прерывания процесса, а также подключение, перемещение и отключение мобильных пользователей без потери драгоценного времени; Быстрота проектирования и ввод в эксплуатацию; Беспроводная сеть не нуждается в огромной массе кабелей и длительном прокладывании. Из-за быстрого развития беспроводных сетей появилась возможность осуществлять управление большинством привычных современных устройств. Благодаря этому взаимодействие населения и специальных служб, повышает эффективность работы многих учреждений путём использования электронных порталов. Оперативное реагирование общества на появление инновационных технологий оказывает положительное влияние на развитие городской инфраструктуры. Данные факторы положили начало развитию системы, которая в зарубежных вариантах называется, как "Smart City", что обычно называют "Умный город". Варианты использования таких систем не ограничиваются простым управлением привычных устройств, что позволяет объединить устройства в группы, а их, в свою очередь, в целые экосистемы с одним центром управления. Это позволяет осуществлять гибкую настройку различных действий по расписанию или при выполнении каких-то смежных действий. Например, интеллектуальные уличные фонари функционируют как точки беспроводного доступа к технологии Wi-Fi, оснащены камерой наблюдения, зарядными устройствами для электромобилей и телефонов и даже измеряют качество воздуха. Этот многозадачный уличный фонарь работает как датчик и привод, предоставляя услуги, которые улучшают качество жизни жителей, собирая важные данные об окружающей среде. При всем подобном разнообразии возможностей и удобстве современных технологий, они не лишены серьёзных недостатков. Беспроводные сети являются сетями повышенной опасности с точки зрения возможного наличия уязвимостей, которые могут использоваться осведомленными злоумышленниками, поэтому необходимо принимать комплексные меры по защите. Также существует проблема надежного хранения данных. Существует несколько подходов к реализации данной задачи: хранение данных на едином централизованном сервере, либо применение технологий распределенного хранения данных. Однако разные подходы не лишены своих недостатков. Хранение данных централизованно повышает: Риск кражи базы данных с целью анализа существующих записей и поиска коллизий для существующих хешей; Риск подмены данных для предоставления доступа к системе по ложным данным; Риск удаления данных с целью полного отказа работоспособности системы.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59