По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этом материале расскажем, как можно фильтровать маршруты, анонсируемые протоколом динамической маршрутизации EIGRP. Данный материал предполагает, что у читателя есть начальные навыки работы с сетью или как минимум знания на уровне CCNA. Поэтому о том, что такое динамическая маршрутизация в этом материале не будет рассказано, так как тема достаточно большая и займет не одну страницу. Теперь представим, что мы работаем в большой компании с сотнями серверов, десятками филиалов. Мы подняли сеть, настроили динамическую маршрутизацию и все счастливы. Пакеты ходят куда надо, как надо. Но в один прекрасный день, нам сказали, что на маршрутизаторах филиалов не должно быть маршрутов к сетям отдела производства. На рисунке ниже представлена упрощенная схема нашей вымышленной сети. Конфигурацию всех устройств из этой статьи (для каждой ноды) можно скачать в архиве по ссылке ниже. Скачать конфиги тестовой лаборатории Мы конечно можем убрать из-под EIGRP указанные сети, но в этом случае из сетей в головном офисе тоже не будет доступа к сетям отдела производства. Именно для таких случаев была придумана такая возможность, как фильтрация маршрутов. В EIGRP это делается командой distribute-list в конфигурации EIGRP. Принцип работы distribute-list (список распределения) прост: список распределения работает по спискам доступа (ACL), спискам префиксов (prefix-list) или карте маршрутов (route-map). Эти три инструмента определяют будут ли анонсироваться указанные сети в обновлениях EIGRP или нет. В команде distribute-list также можно указать направление обновлений: входящие или исходящие. Также можно указать конкретный интерфейс, где должны фильтроваться обновления. Полная команда может выглядеть так: distribute-list acl [in | out][interface-type interface-number] Фильтрация маршрутов с помощью списков доступа Первым делом рассмотрим фильтрацию с помощью ACL. Фильтрация маршрутов EIGRP с помощью списков ACL основан на разрешающих и запрещающих действиях списков доступа. То есть, чтобы маршрут анонсировался, в списке доступа он должен быть указан с действием permit, а deny, соответственно, запрещает анонсирование маршрута. При фильтрации, EIGRP сравнивает адрес источника в списке доступа с номером подсети (префиксом) каждого маршрута и принимает решение на основе действий, указанных в ACL. Чтобы лучше узнать принцип работы приведём примеры. Для фильтрации маршрутов, указанных на рисунке выше нужно создать ACL, где каждый указанный маршрут сопровождается командой deny, а в конце следует прописать permit any, чтобы остальные маршруты могли анонсироваться: access-list 2 deny 10.17.32.0 0.0.1.255 access-list 2 deny 10.17.34.0 0.0.0.255 access-list 2 deny 10.17.35.0 0.0.0.127 access-list 2 deny 10.17.35.128 0.0.0.127 access-list 2 deny 10.17.36.0 0.0.0.63 access-list 2 deny 10.17.36.64 0.0.0.63 access-list 2 permit any А на интерфейсе настройки EGRP прописываем: distribute-list 2 out s4/0 Проверим таблицу маршрутизации до и после применения указанных команд. Фильтрацию будем проводить на WAN маршрутизаторах. Как видим все маршруты до сети отдела Производства видны в таблице маршрутизации филиала. Теперь применим указанные изменения: И посмотрим таблицу маршрутов роутера филиала еще раз: Все маршруты в отдел производства исчезли из таблицы маршрутизации. Правда, можно было обойтись и одной командой в списке доступа, но для наглядности решили прописать все адреса. А более короткую версию можете указать в комментариях к этому посту. Кстати, фильтрацию в данном примере мы применили на один интерфейс, но можно применить и на все интерфейсы, на которых включен EIGRP. Для этого команду distribute-list нужно ввести без указания конкретного интерфейса. distribute-list 2 out Следует отметить, что для правильной работы фильтрации в нашей топологии на маршрутизаторе WAN2 нужно прописать те же настройки, что и на WAN1. Фильтрация маршрутов с помощью списка префиксов В Cisco IOS есть еще один инструмент, который позволяет осуществлять фильтрацию маршрутов prefix-list-ы. Может возникнуть вполне логичный вопрос: а чем не угодили списки доступа? Дело в том, что изначально ACL был разработан для фильтрации пакетов, поэтому для фильтрации маршрутов он не совсем подходит по нескольким причинам: списки IP-префиксов позволяют сопоставлять длину префикса, в то время как списки ACL, используемые командой EIGRP distribution-list, нет; Использование расширенных ACL может оказаться громоздким для конфигурирования; Невозможность определения совпадения маски маршрута при использовании стандартных ACL; Работа ACL достаточно медленна, так как они последовательно применяется к каждой записи в маршрутном обновлении; Для начала разберёмся в принципе работы списка префиксов. Списки IP префиксов позволяют сопоставлять два компонента маршрута: адрес сети (номер сети); длину префикса (маску сети); Между списками доступа и списками префиксов есть общие черты. Как и нумерованные списки доступа, списки префиксов могу состоять из одной и более команд, которые вводятся в режиме глобальной конфигурации и нет отдельного режима конфигурации. Как и в именованных списках доступа, в списках префиксов можно указать номер строки. В целом команда выглядит так: ip prefix-list list-name [ seq seq-value ] { deny | permit prefix / prefix-length } [ ge ge-value ] [ le le-value ] Коротко работу списка префиксов можно описать так: Адрес сети маршрута должен быть в пределах, указанных в команде ip prefix-list prefix/prefix-length. Маска подсети маршрута должна соответствовать значениям, указанным в параметрах prefix-length, ge, le. Первый шаг работает также как и списки доступа. Например, написав ip prefix-list TESTLIST 10.0.0.0/8 мы скажем маршрутизатору, что адрес сети должен начинаться с 10. Но списки префиксов всегда проверяют и на соответствие длины маски сети указанным значениям. Ниже приведено пояснение параметров списка IP-префиксов: Параметр prefix-list-а Значение Не указан 10.0.0.0/8; Маска сети должна быть равной длине, указанной в параметре prefix/prefix-length. Все маршруты, которые начинаются с 10. ge и le (больше чем, меньше чем) 10.0.0.0/8 ge 16 le 24 Длина маски должна быть больше 16, но меньше 24. А первый байт должен быть равен 10-ти. le меньше чем 10.0.0.0/8 le 24 Длина маски должна быть от восьми до 24-х включительно. ge больше чем 10.0.0.0/8 ge 24 Длина маски должна быть равна или больше 24 и до 32-х включительно. Учтите, что Cisco требует, чтобы параметры prefix-length, ge и le соответствовали следующему равенству: prefix-length <= ge-value <= le-value (8<=10<=24). А теперь перейдем непосредственно к настройке фильтрации с помощью списка префиксов. Для этого в интерфейсе конфигурации EIGRP прописываем distribute-list prefix prefix-name. Воспользуемся той же топологией и введём некоторые изменения в конфигурацию маршрутизатора WAN1, точно такую же конфигурацию нужно прописать и на WAN2. Итак, наша задача: отфильтровать маршруты в сети 10.17.35.0 и 10.17.36.0; отфильтровать маршруты сетей точка-точка так, чтобы маршрутизаторы в филиалах и на коммутаторах ядра (Core1 и Core2) не видели сети с длиной маски /30 бит. Так как трафик от пользователей в эти сети не идет, следовательно, нет необходимости анонсировать их в сторону пользователей. Для этого создаем prefix-list с названием FILTER-EIGRP и добавим нужные сети: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Удалим из конфигурации фильтрацию по спискам доступа и проверим таблицу маршрутизации: А теперь применим наш фильтр и затем еще раз проверим таблицу маршрутизации: Как видим из рисунка, маршрутов в сети 10.17.35.0, 10.17.36.0 и сети для соединений точка-точка между сетевыми устройствами в таблице уже нет. А теперь объясним что мы сказали маршрутизатору: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 Все сети, которые начинаются на 10.17.35 и имеют длину 25 бит запретить. Под это условие попадают сети 10.17.35.0/25 и 10.17.35.128/25. Длине префикса /25 соответствует маска 255.255.255.128. ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 Все сети, которые начинаются на 10.17.36 и имеют длину 26 бит запретить. Под это условие попадают сети 10.17.36.0/26 и 10.17.36.64/26. Длине префикса /26 соответствует маска 255.255.255.192. ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 Все сети, длина префикса которых равна 30 бит - запретить. В нашей топологии под это условие попадают сети 10.1.1.0/30, 10.1.1.4/30, 10.1.2.0/30, 10.1.2.4/30 все сети которые начинаются на 10.9.2. ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Все сети, префикс которых имеет длину до 32-х бит разрешить. Под это условие попадают все остальные сети топологии. Фильтрация маршрутов с помощью route-map Далее пойдет речь о картах маршрутов или route-map-ах. В целом, в работе сети route-map-ы используются довольно часто. Этот достаточно гибкий инструмент дает возможность сетевому инженеру тонко настраивать маршрутизацию в корпоративной сети. Именно поэтому следует хорошо изучить принцип их работы, чем мы и займемся сейчас. А дальше покажем, как фильтровать маршруты с помощью этого инструмента. Route-map применяет логику похожую на логику if, else, then в языках программирования. Один route-map может включать в себя несколько команд route-map и маршрутизатор выполняет эти команды поочередно согласно номеру строки, который система добавляет автоматически, если не был указан пользователем. После того как, система нашла соответствие маршрута условию и определила разрешить анонсирование или нет, маршрутизатор прекращает выполнение команды route-map для данного маршрута, даже если дальше указано другое условие. Каждый route-map включает в себя критерии соответствия, который задается командой match. Синтаксис route-map выглядит следующим образом: route-map route-map-name {permit | deny} seq sequence-number match (1st set of criteria) Как и в случае с ACL или prefix-list, в route-map тоже можно указать порядковый номер строки для добавления или удаления соответствующего правила. В команде match можно указать ACL или prefix-list. Но тут может возникнуть недоразумение. А связано оно с тем, как обрабатываются route-map Cisco IOS. Дело в том, что решение о запрете или допуске маршрута основано на команде deny или permit команды route-map. Другими словами, маршрут будет обработан route-map-ом если в ACL или prefix-list-е данный маршрут сопровождается командой permit. Иначе, route-map проигнорирует данную запись и перейдет к сравнению со следующим условием route-map. Поясним на примере: access-list 101 permit 10.17.37.0 0.0.0.255 access-list 102 deny 10.17.35.0 0.0.0.127 route-map Test permit 5 match ip-address 101 route-map Test deny 10 match ip-address 102 В данном случае маршрут 10.17.37.0 будет обработан route-map 5, а маршрут 10.17.35.0 будет проигнорирован, так как в списке доступа под номером 102 он запрещён и не попадёт под критерий соответствия route-map. Приведём ключевые пункты работы route-map при фильтрации маршрутов: Команда route-map с опцией permit либо разрешит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Команда route-map с опцией deny либо запретит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Если команда match основывается на ACL или prefix-list-ы, а в ACL или prefix-list-ах указанный маршрут прописан с действием deny, то маршрут не будет отфильтрован. Это будет означать, что маршрут не соответствует критерию, указанному в команде match и его нужно пропустить для обработки следующим пунктом. В конце каждого route-map существует явный запрет; чтобы пропустить все маршруты, которые не попали под критерии, нужно указать команду route-map с действием permit без опции match. Для того чтобы задействовать route-map в фильтрации маршрутов используется та же команда distribute-list с опцией route-map route-map-name. Внесём некоторые изменения в конфигурацию маршрутизатора WAN1. Точно такие же изменения нужно будет сделать на WAN2. Используем те же префикс-листы, что и в предыдущем примере с незначительными редактированиями: ip prefix-list MANUFACTURING seq 5 permit 10.17.35.0/24 ge 25 le 25 ip prefix-list MANUFACTURING seq 10 permit 10.17.36.0/24 ge 26 le 26 ip prefix-list POINT-TO-POINT seq 5 permit 0.0.0.0/0 ge 30 le 30 После внесения изменений маршрутов в сеть производства, а также в сети точка-точка таблице маршрутизации на роутерах филиалов не окажется. Также на Core1 не будет маршрута до сетей point-to-point: Мы рассмотрели фильтрацию маршрутов в EIGRP тремя способами. Хорошим тоном считается использование списка префиксов, так как они заточены именно под эти цели. А использование карты маршрутизации или route-map-ов неэффективно из-за большего количества команд для конфигурации. В следующем материале рассмотрим фильтрацию в домене OSPF.
img
Дистрибутив FreePBX Distro имеет встроенный скрипт, который позволяет изменить текущую (используемую) версию Asterisk. Важно, что сделать это можно буквально за минуту, и без проблем вернуться на ранее используемую версию. При смене версии используется только одна команда, после ввода которой, мы остается следовать подсказкам меню. Команда следующая: [root@localhost ~]# asterisk-version-switch На следующем этапе, скрипт спросит на какую версию вы хотите переключиться: Pick the Asterisk Version you would like to change to. Press 1 and the Enter key for Asterisk 11 Press 2 and the Enter key for Asterisk 13 Press 3 and the Enter key for Asterisk 14 (Currently in beta) Press 9 and the Enter key to exit and not change your Asterisk Version Нажимаем 1 для переключения на 11 версию Asterisk Нажимаем 2 для переключения на 13 версию Asterisk Нажимаем 3 для переключения на 14 версию Asterisk (сейчас в Beta состоянии) Нажимаем 9 выхода из скрипта без изменений версии Далее начнется изменение конфигурации в соответствие с выбранной версией. По окончанию работы вы можете проверить текущую версию с помощью команды: [root@localhost ~]# asterisk -x "core show version" Asterisk 13.10.0 built by mockbuild @ jenkins2.schmoozecom.net on a i686 running Linux on 2016-07-27 01:24:12 UTC Если версия осталась прежней, дайте в консоль команду: [root@localhost ~]# fwconsole restart По окончанию перезагружаем конфигурацию и Asterisk: [root@localhost ~]# fwconsole reload
img
Система доменных имен (DNS – Domain Name System) обеспечивает сетевую коммуникацию. DNS может показаться какой-то невидимой силой или сущностью до тех пор, пока что-то пойдет не так, потому что если DNS выйдет из строя, то ничего работать не будет. В данной статье будут рассмотрены передовые методы и наиболее важные меры безопасности для поддержания работоспособности вашей инфраструктуры DNS. Чтобы создать безопасную и надежную DNS, обязательно изучите перечисленные ниже пункты. Передовые технологии для обеспечения высокой производительности DNS Обеспечение избыточности и высокой доступности DNS DNS является основой сетевых приложений, поэтому инфраструктура DNS должна быть высоко доступной. А чтобы обеспечить необходимый уровень избыточности, в вашей организации должно быть, как минимум, два DNS-сервера, первичный и вторичный. Чтобы обеспечить работу критически важных для бизнеса систем, необходимо иметь, как минимум, два внутренних DNS-сервера. Все системы активного каталога, обмена данными и электронной почты полагаются на корректную работу DNS. Без исправно функционирующих внутренних DNS-серверов внутренние устройства не будут иметь возможности обмениваться данными. Если на одном DNS-сервере возникнет проблема, то второй сразу же заменяет его. Администраторы настраивают оборудование так, чтобы автоматически использовался вторичный DNS, если первичный не отвечает. IP-адрес внутреннего DNS-сервера может быть любым в диапазоне IP-адресов частной сети. Обеспечивая избыточность DNS-серверов, вы можете добиться высокой доступности инфраструктуры DNS. Непрерывная репликация с первичных серверов на вторичные обеспечит синхронизацию ваших DNS-записей и защитит систему от сбоев. Вы можете быть уверены в том, что конечный пользователь всегда будет иметь возможность получить доступ к системам. Сокрытие DNS-серверов и DNS-информации Не каждый DNS-сервер и не каждая информация должна быть доступна для всех пользователей. Во-первых, откройте только те серверы и данные, которые необходимы лицам, непосредственно использующим эти серверы. Это особенно важно, если ваши доменные имена являются общедоступными. Во-вторых, скройте свой основной DNS-сервер. Внешние пользователи не должны видеть первичные серверы. Записи для этих серверов не должны быть видны ни в одной общедоступной базе данных серверов имен. Запросы от пользователей должны обрабатывать только вторичные DNS-серверы. Если DNS-сервер доступен за пределами вашей сети, то это должен быть авторитативный DNS-сервер. Внешним пользователям не нужно обращаться к вашим рекурсивным DNS-серверам. Системная конфигурация будет высокопроизводительной только тогда, когда сервер будет отвечать только на итеративные запросы для соответствующих зон, за которые он отвечает. В довершение ко всему, иметь доступ к первичным серверам должны только системные администраторы и IT-персонал вашей организации. Если ваши первичные DNS-серверы будут открыты для всех внутренних пользователей, то это может создать серьезную угрозу для безопасности. Как показывает практика, лучше скрывать DNS-серверы и некоторые данные от пользователей, которым доступ к ним не нужен. Нужно ли использовать внешний или внутренний DNS-сервер? Ответ на данный вопрос зависит от внутренней настройки. Чтобы устройства в одном домене могли общаться друг с другом, вам необходимо указать внутренний DNS-сервер. Внешние DNS-серверы не могут работать с именами хостов внутренних устройств. Например, когда компьютер DESKTOP1 отправляет DNS-запрос для офисного принтера или сервера hr-1, только внутренняя DNS может предоставить запись ресурса. Если вы настроите устройство на использование внешнего DNS, например, 8.8.8.8 Google, то вы не сможете использовать внутренние ресурсы. Во внутренних средах необходимо установить, как первичный, так и вторичный DNS на внутренний сервер имен. Даже если основной DNS-сервер даст сбой, проблем с подключением не будет. Дополнительный DNS-сервер содержит все записи и действует как резервная копия. В случае возникновения какой-либо проблемы, этот сервер отвечает на все запросы до тех пор, пока не заработает основной сервер. Использование локального или ближайшего DNS-сервера Офисы крупных организаций часто расположены по всему миру. В таком случае следует настроить локальный DNS-сервер в каждом офисе, если позволяет инфраструктура. А все потому, что локальный сервер сокращает время ответа на DNS-запросы. Если же запрос проходит через глобальную сеть к удаленному серверу имен, то время загрузки увеличивается. При большом количестве клиентов, естественно, увеличивается количество DNS-запросов. Одна централизованная группа DNS-серверов, конечно, может обрабатывать все эти запросы, но с большой задержкой. Если компьютеры пользователей будут направляться на локальный или ближайший сервер имен, то время отклика может существенно сократиться. В таком случае задержка не превышает 50 мс. Более того, это значение обычно даже намного ниже. Использование ближайшего DNS-сервера сокращает время загрузки для всех устройств. Таким образом, вы также уменьшаете нагрузку на удаленный сервер в штаб-квартире и повышаете его производительность. Здесь также остается актуальной рекомендация иметь, как минимум, два DNS-сервера. Передовые методы обеспечения безопасности DNS DNS-серверы очень часто становятся целью кибератак. Важным шагом в предотвращении вторжений в вашу организацию является защита инфраструктуры DNS. Чтобы избежать серьезного нарушения настроек DNS, обязательно изучите меры безопасности, описанные ниже. Ведение журнала DNS-сервера Ведение журнала DNS-сервера – это один из самых эффективных способов отслеживания активности DNS. Журналы сообщают вам, если кто-то пытается вмешаться в ваши DNS-серверы. Помимо активности пользователей, журналы отладки сообщают вам о проблемах с DNS-запросами или обновлениями. Журналы DNS также показывают следы отравления кэша. При таком виде атаки злоумышленник изменяет хранящиеся в кэше данные и сбивают пользователей с курса. Например, IP-адрес www.youtube.com может быть заменен на IP-адрес вредоносного сайта. Когда пользователь отправляет запрос в DNS для youtube.com, сервер теперь возвращает неверный IP-адрес. В результате чего пользователи попадают на тот веб-сайт, который они не хотели посещать и становятся мишенью для хакеров. Несмотря на то, что ведение журнала отладки DNS повышает уровень безопасности, некоторые системные администраторы решают этим пренебречь. Основная причина такого решения – повышение производительности. Отслеживание сетевой активности может помочь вам обнаружить некоторые атаки, такие как DDoS, но не отравление кэша. Поэтому мы настоятельно рекомендуем использовать ведение журналов отладки DNS. Блокировка кэша DNS Всякий раз, когда появляется запрос от клиента, DNS находит информацию и сохраняет ее в кэше для будущего использования. Этот процесс позволяет серверу быстрее отвечать на одни и те же запросы. Злоумышленники могут воспользоваться этой функцией путем изменения сохраненной информации. Следующий шаг после использования журналов отладки DNS – это блокировка кэша DNS. Это функция определяет, когда кэшированные данные могут быть изменены. Сервер хранит информацию о поиске в течение времени, определяемого TTL (Time To Life - время жизни). Если блокировка кэша не используется, то информация может быть перезаписана до истечения TTL. Это оставляет место для атак с отравлением кэша. В некоторых операционных системах блокировка кэша может быть включена по умолчанию. Масштаб блокировки кэша может достигать 100%. Когда установлено значение 70, то перезапись данных невозможна до истечения 70% TTL. При определении блокировки кэша равным 100 изменение кэшированной информации блокируется до истечения всего TTL. Фильтрация DNS-запросов для блокировки вредоносных доменов Фильтрация DNS – это эффективный способ ограничить доступ пользователей к веб-сайту или домену. Основная причина для блокировки разрешения имен для домена – наличие информации о вредоносности этого домена. Когда клиент отправляет запрос на заблокированный веб-сайт, DNS-сервер прекращает любую связь между ними. DNS-фильтрация значительно снижает вероятность проникновения вирусов и вредоносных программ в вашу сеть. Когда пользователь не может получить доступ к вредоносной странице, то и количество угроз, которые могут проникнуть в вашу инфраструктуру, крайне мало. Таким образом, вашему IT-персоналу не требуется круглосуточно работать, чтобы очищать систему от вирусов. Помимо соображений безопасности, есть еще одна причина, по которой организации могут заблокировать домен – бизнес-политика или по соображениям производительности. В список заблокированных доменов могут входить социальные сети, азартные игры, порнография, страницы потокового видео или любые другие веб-сайты. DNS может фильтровать запросы по пользователю, группе или блокировать доступ для всех пользователей. Современные системы обеспечения защиты ПО и брандмауэры имеют DNS-фильтрацию в стандартной комплектации. Некоторые из них предоставляют списки плохих доменов, которые регулярно обновляются. Вы можете использовать готовое программное решение и таким образом автоматизировать фильтрацию DNS, а не добавлять новые записи вручную. Проверка целостности данных DNS с помощью DNSSEC Модули безопасности службы доменных имен (DNSSEC – Domain Name System Security Extensions) гарантируют, что пользователи получат действительные ответы на свои запросы. Целостность данных достигается за счет цифровой подписи DNSSEC на данных DNS, предоставляемых серверам имен. Когда конечный пользователь отправляет запрос, DNS-сервер предоставляет цифровую подпись с ответом. Стало быть, пользователи знают, что они получили достоверную информацию в качестве ответа на отправленный ими запрос. Этот дополнительный уровень безопасности помогает бороться с атаками на протокол DNS. Атаки «спуфинга» DNS и отравления кэша успешно предотвращаются, поскольку DNSSEC обеспечивает целостность данных и авторизацию их источника. В дальнейшем пользователи будут уверены, что посещают именно те страницы, которые хотели посетить. Настройка списков контроля доступа Списки контроля доступа (ACL – Access Control Lists) – это еще один способ защиты DNS-серверов от несанкционированного доступа и атак «спуфинга». К вашему основному DNS-серверу доступ должны иметь только системные и IT-администраторы. Настройка ACL для разрешения входящих подключений к серверу имен с определенных хостов гарантирует то, что только определенная часть персонала сможет обращаться к вашим серверам. Кроме того, ACL должны определять, какие серверы могут выполнять передачу зон. Злоумышленники могут попытаться определить настройки вашей зоны, отправив запросы на передачу зоны через вторичные DNS-серверы. Если вы заблокируете все запросы на передачу зоны через вторичные серверы, то злоумышленник не сможет получить информацию о зоне. Эта конфигурация не позволяет третьим лицам получить представление о том, как организована ваша внутренняя сеть. Заключение Всегда есть возможности для улучшения системной архитектуры DNS и ее безопасности. Постоянные угрозы скрываются и ждут, когда появится уязвимость в вашей информационной системе, чтобы воспользоваться ей. Но тем не менее, если вы будете следовать рекомендациям, описанным в данном руководстве, то вы охватите наиболее важные аспекты, которые необходимы для обеспечения безопасности и отказоустойчивости вашей инфраструктуры DNS.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59