По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Конфигурация вашей сетевой карты напрямую влияет, насколько эффективно взаимодействуют ваши сервера. Необходимо понимать, как настройки автосогласования, скорости и дуплекса влияют на передачу данных, чтобы успешно поддерживать сетевое соединение. А также расскажем про дополнительные фичи, которые помогут находить и устранять сетевые неполадки. В этой статье вы узнаете, как изменить настройки скорости, дуплекса и автосогласования в Linux с помощью команд ethtool. Что такое полудуплекс, полный дуплекс и автосогласование? Полудуплексный режим (Half-duplex) позволяет устройству отправлять или получать пакеты по очереди. Устройство, установленное в этот режим, не может выполнять оба действия одновременно. Когда режим устройства находится в полнодуплексном режиме (Full-duplex), он также может отправлять и получать пакеты одновременно. Автосогласование (Auto-Negotiation) - это механизм, с помощью которого устройство автоматически выбирает наиболее эффективный режим передачи на основе характеристик своих аналогов. Рекомендуется оставить автосогласование включенным, поскольку оно позволяет устройствам выбирать наиболее эффективные средства для передачи данных. Что такое дуплексное несоответствие? Такое происходит когда устройство с включенным автосогласованием подключается к устройству, которое не использует автосогласование. Конец соединения с активным автосогласованием все еще может определить скорость другого конца, но не может правильно определить дуплексный режим. Как правило, конец соединения с автоматическим согласованием будет использовать полудуплекс, тогда как другой конец может быть в дуплексном режиме. Эта ситуация считается дуплексным несоответствием (duplex mismatch). Несоответствие дуплекса не прекращает связь полностью. Передача отдельных пакетов и небольших объемов данных не вызывают больших проблем. Однако при отправке большого объема данных с любого конца скорость значительно падает. Соединение работает, но производительность снижается, поскольку скорость передачи данных асимметрична и может привести к потере пакетов. Как использовать команду Ethtool для настройки параметров сетевого адаптера Ethtool - это команда конфигурации платы сетевого интерфейса, которая позволяет вам получать информацию и изменять настройки сетевого адаптера. Эти настройки включают скорость, дуплекс, автосогласование и многие другие параметры. Помимо этого, ethtool используется для: Получения идентификационной и диагностической информации Получения расширенной статистики устройства Контроля контрольной суммы Контроля размеров кольца DMA и модерации прерываний Контроля выбора очереди приема для устройств с несколькими очередями Обновления прошивки во флеш-памяти Для установки ethtool используйте следующие команды: yum install ethtool [в Fedora, CentOS, RHEL] sudo apt-get install ethtool [в Ubuntu, Debian] Чтобы продолжить, вам нужно знать имя вашей сетевой карты. Чтобы найти имя вашей сетевой карты, введите в командном терминале следующую команду: ifconfig Вывод покажет нам имя сетевой карты устройства. enp0s3 Link encap:Ethernet HWaddr 00:1A:2B:3C:4D:5E Теперь, когда вы определили имя устройства, проверьте текущие настройки скорости, автосогласования и дуплексного режима с помощью команды: ethtool имя_устройства. В нашем конкретном примере команда выглядит так: ethtool enp0s3 Выходные данные показывают, что текущая скорость равна 1000 Мбит/с, что дуплекс находится в режиме «Full», и что автосогласование включено. Изменение настроек сетевого адаптера Команда ethtool –s может использоваться для изменения текущих настроек путем определения значений скорости speed, дуплекса duplex и автосогласования autoneg в следующем формате: sudo ethtool –s [device_name] speed [10/100/1000] duplex [half/full] autoneg [on/off] Например, чтобы установить скорость 1000 Мбит/с, дуплексный режим - «полный», а автоматическое согласование - «включено», команда будет выглядеть так: sudo ethtool –s enp0s3 speed 1000 duplex full autoneg on Команда ethtool [имя_устройства] необходима для подтверждения того, что изменения были применены. Сохранение настроек Изменения, сделанные с помощью Ethtool, по умолчанию отменяются после перезагрузки системы. Чтобы применить пользовательские настройки при каждой загрузке системы, отредактируйте файл для интерфейса устройства: vi /etc/sysconfig/network-scripts/ifcfg-enp0s3 Добавьте нужные значения в виде строки в конце файла, используя следующий синтаксис: ETHTOOL_OPTS="speed [100|1000|10000] duplex [half|full] autoneg [on|off]” Например: ETHTOOL_OPTS="speed 1000 duplex full autoneg on” Сохраните изменения и выйдите из файла. Теперь изменения применяются после каждой перезагрузки и являются постоянными, если файл не будет изменен снова. Просмотр статистики интерфейса Если вы хотите получить статистику о вашей сетевой карте, введите команду: sudo ethtool -S имя_устройства Вывод этой команды будет выглядеть так: NIC statistics: rx_packets: 108048475 tx_packets: 125002612 rx_bytes: 17446338197 tx_bytes: 113281003056 rx_broadcast: 83067 tx_broadcast: 1329 rx_multicast: 3 tx_multicast: 9 rx_errors: 0 tx_errors: 0 tx_dropped: 0 multicast: 3 collisions: 0 rx_length_errors: 0 rx_over_errors: 0 rx_crc_errors: 0 rx_frame_errors: 0 rx_no_buffer_count: 0 rx_missed_errors: 0 tx_aborted_errors: 0 tx_carrier_errors: 0 tx_fifo_errors: 0 tx_heartbeat_errors: 0 tx_window_errors: 0 tx_abort_late_coll: 0 tx_deferred_ok: 0 tx_single_coll_ok: 0 tx_multi_coll_ok: 0 tx_timeout_count: 0 tx_restart_queue: 2367 rx_long_length_errors: 0 rx_short_length_errors: 0 rx_align_errors: 0 tx_tcp_seg_good: 0 tx_tcp_seg_failed: 0 rx_flow_control_xon: 0 rx_flow_control_xoff: 0 tx_flow_control_xon: 0 tx_flow_control_xoff: 0 rx_long_byte_count: 17446338197 rx_csum_offload_good: 107876452 rx_csum_offload_errors: 2386 rx_header_split: 0 alloc_rx_buff_failed: 0 tx_smbus: 0 rx_smbus: 0 dropped_smbus: 0 rx_dma_failed: 0 tx_dma_failed: 0 Использование приведенной выше команды - отличный способ устранения проблем с конкретной сетевой картой. Физическое расположение конкретного сетевого адаптера Вот действительно полезный трюк, который предлагает ethtool: допустим у вас есть сервер с несколькими сетевыми картами, и одна из них работает со сбоями, но вы не уверены, какая именно это карта. Вы можете использовать ethtool, чтобы заставить мигать индикатор сетевого адаптера, чтобы определить, какой сетевой адаптер вам нужен. Скажем, если вы хотите мигать светодиодом устройства Ethernet enp0s3 в течение 15 секунд - команда для этого будет выглядеть так: sudo ethtool -p enp0s3 15 Светодиод начнет мигать, чтобы вы знали, с какой картой вы имеете дело. Тестирование сетевой карты Команда ethtool предлагает пару удобных тестов, которые вы можете запустить на сетевой карте: Online - тесты nvram и тест ссылок Offline - тестирует регистр, память, loopback, прерывание Давайте запустим онлайн-тест на нашей сетевой карте. Эта команда выглядит так: sudo ethtool -t enp0s3 online После выполнения команда покажет нам результаты: Учтите, что некоторые устройства не поддерживают offline тестирование. Информация о драйвере Чтобы узнать имя драйвера и связанную информацию о драйвере используйте: ethtool -i eth0 Вывод: driver: via-rhine version: 1.5.0 firmware-version: bus-info: 0000:00:06.0 supports-statistics: no supports-test: no supports-eeprom-access: no supports-register-dump: no supports-priv-flags: no Заключение Следуя этому руководству, вы успешно изменили настройки своей сетевой карты с помощью команд ethtool. Вы также лучше поняли, как режимы автосогласования и дуплекса влияют на производительность сервера. И заодно узнали пару интересных функций команды ethtool.
img
Первая часть тут Как только изменение в топологии сети было обнаружено, оно должно быть каким-то образом распределено по всем устройствам, участвующим в плоскости управления. Каждый элемент в топологии сети может быть описан как: Канал или граница, включая узлы или достижимые места назначения, прикрепленные к этому каналу. Устройство или узел, включая узлы, каналы и доступные места назначения, подключенные к этому устройству. Этот довольно ограниченный набор терминов может быть помещен в таблицу или базу данных, часто называемую таблицей топологии или базой данных топологии. Таким образом, вопрос о распределении изменений в топологии сети на все устройства, участвующие в плоскости управления, можно описать как процесс распределения изменений в определенных строках в этой таблице или базе данных по всей сети. Способ, которым информация распространяется по сети, конечно, зависит от конструкции протокола, но обычно используются три вида распространения: поэтапное (hop-by-hop) распространение, лавинное (flooded) распространение и централизованное (centralized) хранилище некоторого вида. Лавинное (flooded) распространение. При лавинной рассылке каждое устройство, участвующее в плоскости управления, получает и сохраняет копию каждой части информации о топологии сети и доступных местах назначения. Хотя существует несколько способов синхронизации базы данных или таблицы, в плоскостях управления обычно используется только один: репликация на уровне записи. Рисунок 6 иллюстрирует это. На рисунке 6 каждое устройство будет рассылать известную ему информацию ближайшим соседям, которые затем повторно рассылают информацию своим ближайшим соседу. Например, A знает две специфические вещи о топологии сети: как достичь 2001: db8: 3e8: 100 :: / 64 и как достичь B. A передает эту информацию в B, который, в свою очередь, передает эту информацию в C. Каждое устройство в сети в конечном итоге получает копию всей доступной топологической информации; A, B и C имеют синхронизированные базы данных топологии (или таблицы). На рисунке 6 связь C с D показана как элемент в базе данных. Не все плоскости управления будут включать эту информацию. Вместо этого C может просто включать подключение к диапазону адресов 2001: db8: 3e8: 102 :: / 64 (или подсети), который содержит адрес D. Примечание. В более крупных сетях невозможно уместить все описание подключений устройства в один пакет размером с MTU, и для обеспечения актуальности информации о подключении необходимо регулярно задерживать время ожидания и повторно загружать данные. Интересная проблема возникает в механизмах распространения Flooding рассылки, которые могут вызывать временные петли маршрутизации, называемые microloops. Рисунок 7 демонстрирует эту ситуацию. На рисунке 7, предположим, что канал [E, D] не работает. Рассмотрим следующую цепочку событий, включая примерное время для каждого события: Старт: A использует E, чтобы добраться до D; C использует D, чтобы добраться до E. 100 мс: E и D обнаруживают сбой связи. 500 мс: E и D рассылают информацию об изменении топологии на C и A. 750 мс: C и A получают обновленную информацию о топологии. 1000 мс: E и D пересчитывают свои лучшие пути; E выбирает A как лучший путь для достижения D, D выбирает C как лучший путь для достижения E. 1,250 мс: лавинная рассылка A и C информации об изменении топологии на B. 1400 мс: A и C пересчитывают свои лучшие пути; A выбирает B для достижения D, C выбирает B для достижения E. 1500 мс: B получает обновленную информацию о топологии. 2,000 мс: B пересчитывает свои лучшие пути; он выбирает C, чтобы достичь D, и A, чтобы достичь E. Хотя время и порядок могут незначительно отличаться в каждой конкретной сети, порядок обнаружения, объявления и повторных вычислений почти всегда будет следовать аналогичной схеме. В этом примере между этапами 5 и 7 образуется микропетля; в течение 400 мс, A использует E для достижения D, а E использует A для достижения D. Любой трафик, входящий в кольцо в A или D в течение времени между пересчетом E лучшего пути к D и пересчетом A лучшего пути к D будет петлей. Одним из решений этой проблемы является предварительное вычисление альтернативных вариантов без петель или удаленных альтернатив без петель. Hop by Hop При поэтапном распределении каждое устройство вычисляет локальный лучший путь и отправляет только лучший путь своим соседям. Рисунок 8 демонстрирует это. На рисунке 8 каждое устройство объявляет информацию о том, что может достигнуть каждого из своих соседей. D, например, объявляет о достижимости для E, а B объявляет о доступности для C, D и E для A. Интересно рассмотреть, что происходит, когда A объявляет о своей доступности для E через канал на вершине сети. Как только E получит эту информацию, у него будет два пути к B, например: один через D и один через A. Таким же образом у A будет два пути к B: один напрямую к B, а другой через E. Любой из алгоритмов кратчайшего пути, рассмотренные в предыдущих статьях, могут определить, какой из этих путей использовать, но возможно ли формирование микропетель с помощью лавинного механизма распределения? Рассмотрим: E выбирает путь через A, чтобы добраться до B. Канал [A, B] не работает. A обнаруживает этот сбой и переключается на путь через E. Затем A объявляет этот новый путь к E. E получает информацию об измененной топологии и вычисляет новый лучший путь через D. В промежутке между шагами 3 и 5 А будет указывать на Е как на свой лучший путь к В, в то время как Е будет указывать на А как на свой лучший путь к В—микропетля. Большинство распределительных систем hop-by-hop решают эту проблему с помощью split horizon или poison reverse. Определены они следующим образом: Правило split horizon гласит: устройство не должно объявлять о доступности к пункту назначения, который он использует для достижения пункта назначения. Правило poison reverse гласит: устройство должно объявлять пункты назначения по отношению к соседнему устройству, которое оно использует, чтобы достичь пункта назначения с бесконечной метрикой. Если разделение горизонта (split horizon) реализованный на рисунке 8, E не будет объявлять о достижимости для B, поскольку он использует путь через A для достижения B. В качестве альтернативы E может отравить путь к B через A, что приведет к тому, что A не будет иметь пути через E к B. Централизованное Хранилище. В централизованной системе каждое сетевое устройство сообщает информацию об изменениях топологии и достижимости контроллеру или, скорее, некоторому набору автономных служб и устройств, действующих в качестве контроллера. В то время как централизация часто вызывает идею единого устройства (или виртуального устройства), которому передается вся информация и который передает правильную информацию для пересылки всем устройствам обработки пакетов в сети, это чрезмерное упрощение того, что на самом деле означает централизованная плоскость управления. Рисунок 9 демонстрирует это. На рисунке 9, когда канл между D и F не работает: D и F сообщают об изменении топологии контроллеру Y. Y пересылает эту информацию другому контроллеру X. Y вычисляет лучший путь к каждому месту назначения без канала [D, F] и отправляет его каждому затронутому устройству в сети. Каждое устройство устанавливает эту новую информацию о пересылке в свою локальную таблицу. Конкретный пример шага 3 - Y вычисляет следующий лучший путь к E без канала [D, F] и отправляет его D для установки в его локальной таблице пересылки. Могут ли микропетли образовываться в централизованной плоскости управления? Базы данных в X и Y должны быть синхронизированы, чтобы оба контроллера вычисляли одинаковые пути без петель в сети Синхронизация этих баз данных повлечет за собой те же проблемы и (возможно) использование тех же решений, что и решения, обсуждавшиеся до сих пор в этой статье. Подключенным устройствам потребуется некоторое время, чтобы обнаружить изменение топологии и сообщить об этом контроллеру. Контроллеру потребуется некоторое время, чтобы вычислить новые пути без петель. Контроллеру потребуется некоторое время, чтобы уведомить затронутые устройства о новых путях без петель в сети. Во время временных интервалов, описанных здесь, сеть все еще может образовывать микропетли. Централизованная плоскость управления чаще всего переводится в плоскость управления не запущенными устройствами переадресации трафика. Хотя они могут казаться радикально разными, централизованные плоскости управления на самом деле используют многие из тех же механизмов для распределения топологии и достижимости, а также те же алгоритмы для вычисления безцикловых путей через сеть, что и распределенные плоскости управления. Плоскости сегментирования и управления. Одна интересная идея для уменьшения состояния, переносимого на любое отдельное устройство, независимо от того, используется ли распределенная или централизованная плоскость управления, заключается в сегментировании информации в таблице топологии (или базе данных). Сегментация-это разделение информации в одной таблице на основе некоторого свойства самих данных и хранение каждого полученного фрагмента или фрагмента базы данных на отдельном устройстве. Рисунок 10 демонстрирует это. В сети на рисунке 10 предположим, что оба контроллера, X и Y, имеют информацию о топологии для всех узлов (устройств) и ребер (каналов) в сети. Однако для масштабирования размера сети доступные места назначения были разделены на два контроллера. Существует множество возможных схем сегментирования - все, что может разделить базу данных (или таблицу) на части примерно одинакового размера, будет работать. Часто используется хеш, так как хеши можно быстро изменить на каждом устройстве, где хранится сегмент, чтобы сбалансировать размеры сегментов. В этом случае предположим, что схема сегментирования немного проще: это диапазон IP-адресов. В частности, на рисунке представлены два диапазона IP-адресов: 2001: db8: 3e8: 100 :: / 60, который содержит от 100 :: / 64 до 10f :: / 64; и 2001: db8: 3e8: 110 :: / 60, который содержит от 110 :: / 64 до 11f :: / 64. Каждый из этих диапазонов адресов разделен на один контроллер; X будет содержать информацию о 2001: db8: 3e8: 100 :: / 60, а Y будет содержать информацию о 2001: db8: 3e8: 110 :: / 64. Не имеет значения, где эти доступные пункты назначения подключены к сети. Например, информация о том, что 2001: db8: 3e8: 102 :: / 64 подключен к F, будет храниться в контроллере X, а информация о том, что 2001: db8: 3e8: 110 :: / 64 подключен к A, будет храниться на контроллере Y. Чтобы получить информацию о доступности для 2001: db8: 3e8: 102 :: / 64, Y потребуется получить информацию о том, где этот пункт назначения соединен с X. Это будет менее эффективно с точки зрения вычисления кратчайших путей, но он будет более эффективным с точки зрения хранения информации, необходимой для вычисления кратчайших путей. Фактически, возможно, если информация хранится правильно (а не тривиальным способом, используемым в этом примере), чтобы несколько устройств вычислили разные части кратчайшего пути, а затем обменивались только результирующим деревом друг с другом. Это распределяет не только хранилище, но и обработку. Существует несколько способов, с помощью которых информация о плоскости управления может быть разделена, сохранена и, когда вычисления выполняются через нее, чтобы найти набор путей без петель через сеть. Согласованность, доступность и возможность разделения. Во всех трех системах распределения, обсуждаемых в этой статье, - лавинной, поэтапной и централизованных хранилищ - возникает проблема микропетель. Протоколы, реализующие эти методы, имеют различные системы, такие как разделение горизонта и альтернативы без петель, чтобы обходить эти микропетли, или они позволяют микропетлям появляться, предполагая, что последствия будут небольшими для сети. Существует ли объединяющая теория или модель, которая позволит инженерам понять проблемы, связанные с распределением данных по сети, и различные сопутствующие компромиссы? Есть: теорема CAP. В 2000 году Эрик Брюер, занимаясь как теоретическими, так и практическими исследованиями, постулировал, что распределенная база данных обладает тремя качествами: Согласованностью, Доступностью и устойчивость к разделению (Consistency, Accessibility Partition tolerance-CAP). Между этими тремя качествами всегда есть компромисс, так что вы можете выбрать два из трех в любой структуре системы. Эта гипотеза, позже доказанная математически, теперь известна как теорема CAP. Эти три термина определяются как: Согласованность: Каждый считыватель видит согласованное представление содержимого базы данных. Если какое-то устройство С записывает данные в базу данных за несколько мгновений до того, как два других устройства, А и В, прочитают данные из базы данных, оба считывателя получат одну и ту же информацию. Другими словами, нет никакой задержки между записью базы данных и тем, что оба считывателя, А и В, могут прочитать только что записанную информацию. Доступность: каждый считыватель имеет доступ к базе данных при необходимости (почти в реальном времени). Ответ на чтение может быть отложен, но каждое чтение будет получать ответ. Другими словами, каждый считыватель всегда имеет доступ к базе данных. Не существует времени, в течение которого считыватель получил бы ответ «сейчас вы не можете запросить эту базу данных». Устойчивость к разделению: возможность копирования или разделения базы данных на несколько устройств. Проще изучить теорему CAP в небольшой сети. Для этого используется рисунок 11. Предположим, что A содержит единственную копию базы данных, к которой должны иметь доступ как C, так и D. Предположим, что C записывает некоторую информацию в базу данных, а затем сразу же после, C и D считывают одну и ту же информацию. Единственная обработка, которая должна быть, чтобы убедиться, что C и D получают одну и ту же информацию, - это A. Теперь реплицируйте базу данных, чтобы была копия на E и еще одна копия на F. Теперь предположим, что K записывает в реплику на E, а L читает из реплики на F. Что же будет? F может вернуть текущее значение, даже если это не то же самое значение, что только что записал К. Это означает, что база данных возвращает непоследовательный ответ, поэтому согласованность была принесена в жертву разделению базы данных. Если две базы данных синхронизированы, ответ, конечно, в конечном итоге одинаковым, но потребуется некоторое время, чтобы упаковать изменение (упорядочить данные), передать его в F и интегрировать изменение в локальную копию F. F может заблокировать базу данных или определенную часть базы данных, пока выполняется синхронизация. В этом случае, когда L читает данные, он может получить ответ, что запись заблокирована. В этом случае доступность теряется, но сохраняется согласованность и разбиение базы данных. Если две базы данных объединены, то согласованность и доступность могут быть сохранены за счет разделения. Невозможно решить эту проблему, чтобы все три качества были сохранены, из-за времени, необходимого для синхронизации информации между двумя копиями базы данных. Та же проблема актуальна и для сегментированной базы данных. Как это применимо к плоскости управления? В распределенной плоскости управления база данных, из которой плоскость управления черпает информацию для расчета путей без петель, разделена по всей сети. Кроме того, база данных доступна для чтения локально в любое время для расчета путей без петель. Учитывая разделение и доступность, необходимые для распределенной базы данных, используемой в плоскости управления, следует ожидать, что непротиворечивость пострадает - и это действительно так, что приводит к микропетлям во время конвергенции. Централизованная плоскость управления не «решает» эту проблему. Централизованная плоскость управления, работающая на одном устройстве, всегда будет согласованной, но не всегда будет доступной, а отсутствие разделения будет представлять проблему для устойчивости сети.
img
Привет! Сегодня в статье мы расскажем про базовую настройку SIP-транка в Cisco Unified Communications Manager (CUCM) . Настройка В меню Cisco Unified CM Administration переходим во вкладку Device → Trunk и нажимаем Add New: В открывшемся окне в поле Trunk Type выбираем SIP Trunk, а в поле Device Protocol выбираем SIP: Далее в новом окне нам нужно указать следующие опции: Device Name – Имя транка; Device Pool – Девайс пул создаваемого транка, необходимо чтобы он совпадал с устройствами, которые будут маршрутизироваться через него (по умолчанию default); Calling Search Space – CSS для транка, необходимо чтобы он совпадал с маршрутизируемыми устройствами (если используется, по умолчанию none). Также CSS указывается в полях Rerouting Calling Search Space, Out-Of-Dialog Refer Calling Search Space и SUBSCRIBE Calling Search Space; Destination Address и Destination Port – IP адрес и порт устройства на другой стороне транка; SIP Trunk Security Profile - профиль безопасности транка, по умолчанию Non Secure SIP Trunk Profile; SIP Profile - SIP профиль, по-умолчанию Standard SIP Profile; После создания транка нужно настроить Route Pattern, при помощи которого мы будем направлять звонки в нужном направлении. (Подробнее об этом написано в статьях про Route pattern и Route list/Route group). Для этого переходим во вкладку Call Routing → Route/Hunt → Route Pattern. Здесь в строке Route Pattern указываем паттерн, набрав который вызов будет направляться в выбранном направлении, которое указываем в строке Gateway/Route List:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59