По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Все мы слышали об SSL. SSL – это то, благодаря чему процветают такие вещи, как E-commerce. SSL позволяет нам безопасно взаимодействовать с сайтами… но что нам делать, если нужно конфиденциально подключиться к другой сети, а не сайту? Здесь и пригодится IPSec. Многие ИТ-специалисты и системные администраторы не до конца понимают IPSec. Конечно же, все мы знаем, что IPSec – это тип защищенной передачи данных, но какие приложения им пользуются? И как работает IPSec? Давайте в этом разберемся. В данной статье мы обсудим, что такое IPSec, для чего используется, как работает и чем отличается от таких протоколов, как SSL и TLS. Что такое IPSec? IPSec – это метод безопасного и зашифрованного обмена данными между клиентом и сетью. Такое «сообщение» передается через общедоступные сети (Интернет). Чаще всего IPSec используется для VPN, а также подключения двух частных сетей. Сам по себе IPsec не является протоколом. Это, скорее, набор протоколов, которые используются вместе. К таким протоколам относятся: Authentication Header (Аутентификационный заголовок) Encapsulating Security Protocol (Инкапсулирующий протокол безопасности) Security Association (Ассоциация безопасности) Internet Protocol (Интернет-протокол) Как работает IPsec? IPSec позволяет клиенту безопасно обмениваться данными с другой сетью. Необходимо отметить, что данный метод обычно не используется для взаимодействия между устройствами, а применяется для подключения ноутбука к частной сети через общедоступную сеть (по типу Интернета). Кроме того, IPsec может соединять две частные сети. Обратите внимание, что мы не используем HTTP или TCP для передачи данных. Это потому, что в рамках модели OSI (модель открытого системного взаимодействия) IPSec проходит по уровню Layer 3 сети. То есть, в принципе, IPSec может оказаться безопаснее других методов защищенной передачи данных. IPSec-соединения по-прежнему устанавливаются между клиентом и хостом через другие сети. И эти другие сети обычно являются общедоступными – как, например, Интернет. Поэтому все взаимодействия между клиентом и хостом зашифрованы. В любом случае, ключи шифрования не согласовываются с каждым новым подключением. До установки соединения и клиент, и хост должны знать закрытые ключи шифрования. Это последнее предложение очень важное. Дело в том, что в ходе взаимодействия зашифровывается весь пакет данных, включая его заголовок. Быть может, вы подумаете: чтобы правильно попасть в пункт назначения, пакеты должны иметь читабельные заголовки. И вы правы. Кстати, именно поэтому и используется Encapsulating Security Protocol (ESP). Для транспортировки ESP добавляет в пакет новую информацию о заголовке и конечном управляющем поле (или трейлере; он похож на заголовок, но располагается в конце пакета), тогда как настоящий заголовок остается зашифрованным. Точно также происходит и аутентификация каждого пакета. Хост IPSec подтверждает, что каждый пакет полученных данных отправлялся тем объектом, который, как считает хост, и был отправителем. В противном случае этот пакет данных отклоняется. Для чего используется IPSec? IPSec используется для создания безопасного метода взаимодействия между клиентом и хостом. Клиентом может быть, например, ноутбук. Или же частная сеть. Хостом, как правило, тоже служит частная сеть. Теперь мы знаем, как работает IPsec, и пора разобраться, для чего он используется? Что же означает предыдущий абзац? Чаще всего IPSec используется для VPN. VPN – это виртуальная частная сеть. VPN позволяет клиенту подключаться к частной коммерческой сети через общедоступную сеть интернет (например, ноутбук сотрудника). Как только ноутбук подключился к частной коммерческой сети через VPN, то он как бы сам попадает в эту частную сеть – для всех целей и задач. Иначе говоря, подключившись к коммерческой сети ноутбук получает доступ ко внутренним ИТ-ресурсам. Весь трафик этого ноутбука (входящий и исходящий) циркулирует через частную коммерческую сеть в интернет. Соединения двух удаленных частных сетей можно настраивать через IPsec-подключения и VPN. Например, вы ведете свою деятельность в двух разных локациях (в Пенсильвании и Калифорнии). Как настроить подключение? Провести кабель не получится – офисы находятся слишком далеко друг от друга. Раньше таким компаниям приходилось оплачивать дорогую выделенную линию (по типу Т1 подключения). Но сейчас они могут обмениваться данными через открытый интернет с помощью IPsec-подключения. Отличия между IPsec и TLS (или SSL) IPsec-подключения и TLS (SSL)-подключения во многом похожи. Оба способа служат для безопасного и зашифрованного обмена данными. Оба протокола могут использовать общедоступные сети для взаимодействия и т.д. и т.п. Но в то же время, IPsec и TLS/SSL во многом отличаются. Например, IPsec-подключения являются частью уровня Layer 3 в модели OSI, тогда как TLS и SSL-подключения относятся к уровню Layer 7. Получается, что IPsec-подключения выполняются на базовом уровне соединений в модели OSI, тогда как TLS и SSL начинаются выше в стеке. Кроме того, работа TLS и SSL-соединений зависит от прикладного уровня (HTTP) и уровня 4 (TCP). То есть на этих уровнях они также подвержены эксплойтам, чего не скажешь о IPsec. Еще одно важное отличие между IPsec и SSL или TSL заключается в том, как согласуются подключения. Поскольку TLS и SSL-подключения используют TCP, их типы безопасного подключения необходимо вначале согласовать. После этого клиент и хост дополнительно согласовывают ключ шифрования. С IPSec все иначе. Передача данных зашифровывается сразу. Кроме того, секретный ключ для шифрования передается клиенту и хосту по отдельности – еще до попытки взаимодействия. Также его можно передавать через DNS (хорошо бы при помощи DNSsec). Метод, который используется для обмена ключами в IPsec, называется IKEv1 или IKEv2. Чаще всего сейчас пользуется IKEv2. Это подводит нас к еще одной интересной детали. Поскольку IPsec-соединения зашифровываются сразу, тоже самое можно сделать и со всем заголовком IP-пакета. Но IP-пакетам по-прежнему нужен читабельный заголовок, чтобы попасть в правильное место. Для этих целей в зашифрованные пакеты IPsec добавляются дополнительные заголовки и трейлеры. То есть размеры MSS (Maximum segment size) и MTU (Maximum transmission unit) для каждого пакета изменяются. Сетевым администраторам необходимо предусмотреть эту разницу в своих сетях. Заключение В этой статье мы рассмотрели множество вопросов. Давайте быстро подведем итог. IPSec – это метод безопасного и зашифрованного обмена данными между клиентом и хостом. Клиентом может быть устройство (например ноутбук) или частная сеть. Хостом чаще всего бывает частная сеть. Сам IPsec не является протоколом; это набор протоколов, которые используются вместе. Протоколы, которыми пользуется IPsec, начинаются на уровне Layer 3 модели OSI, что, возможно, делает IPsec безопаснее, чем TLS или SSL. IPsec обычно используется для VPN, то также подходит для подключения двух частных сетей.
img
Все маршрутизаторы добавляют подключенные маршруты. Затем в большинстве сетей используются протоколы динамической маршрутизации, чтобы каждый маршрутизатор изучал остальные маршруты в объединенной сети. Сети используют статические маршруты - маршруты, добавленные в таблицу маршрутизации посредством прямой настройки - гораздо реже, чем динамическая маршрутизация. Однако статические маршруты иногда могут быть полезны, и они также могут быть полезными инструментами обучения. Статические сетевые маршруты IOS позволяет назначать отдельные статические маршруты с помощью команды глобальной конфигурации ip route. Каждая команда ip route определяет пункт назначения, который может быть сопоставлен, обычно с идентификатором подсети и маской. Команда также перечисляет инструкции пересылки, обычно перечисляя либо исходящий интерфейс, либо IP-адрес маршрутизатора следующего перехода. Затем IOS берет эту информацию и добавляет этот маршрут в таблицу IP-маршрутизации. Статический маршрут считается сетевым, когда пункт назначения, указанный в команде ip route, определяет подсеть или всю сеть класса A, B или C. Напротив, маршрут по умолчанию соответствует всем IP-адресам назначения, а маршрут хоста соответствует одному IP-адресу (то есть адресу одного хоста). В качестве примера сетевого маршрута рассмотрим рисунок 1. На рисунке показаны только детали, относящиеся к статическому сетевому маршруту на R1 для подсети назначения 172.16.2.0/24, которая находится справа. Чтобы создать этот статический сетевой маршрут на R1, R1 настроит идентификатор и маску подсети, а также либо исходящий интерфейс R1 (S0/0/0), либо R2 в качестве IP-адреса маршрутизатора следующего перехода (172.16.4.2). Схема сети устанавливает соединение между двумя маршрутизаторами R1, R2 и двумя хостами 1 и 2. Порт G0/0 .1 R1 подключен к шлейфу слева, который, в свою очередь, подключен к хосту 1, имеющему подсеть 172.16. 1.9. Интерфейс S0/0/0 R1 последовательно подключен к R2 с IP-адресом 172.16.4.2. Интерфейс G0/0.2 на R2 подключен к шлейфу, который, в свою очередь, подключен к хосту 2 с IP-адресом 172.16.2.0.9. Здесь маршрутизатор R1 предназначен для адреса 172.16.2.0/24 в подсети. Пакеты должны перемещаться либо с интерфейса S0/0/0 маршрутизатора R1, либо с маршрутизатора R2 с IP-адресом 172.16.2.0/24. В примере 1 показана конфигурация двух примеров статических маршрутов. В частности, он показывает маршруты на маршрутизаторе R1 на рисунке 2 для двух подсетей в правой части рисунка. При настройке сети маршрутизатор R1 имеет соединение с двумя маршрутизаторами R2 и R3 справа. Интерфейс G0/0 .1 маршрутизатора R1 подключен к заглушке слева и, в свою очередь, подключен к хосту A, имеющему подсеть 172.16.1.9 с маской подсети 172.16.1.0 /24. Справа-интерфейс S0/0/1.1 из R1 с маской подсети 172.16.4.0 / 24 подключается к интерфейсу S0/0/1.2 из R2 с маской подсети 172.16.2.0 / 24 через последовательную линию. Кроме того, интерфейс G0/1/ 0.1 из R1 с маской подсети 172.16.5.0 / 24 подключается к интерфейсу G0/0/0 .3 из R3 с маской подсети 172.16.3.0 / 24 через глобальную сеть. Заглушка подключается к интерфейсу G0/0 .2 из R2, где маска подсети равна 172.16.2.0 / 24 и, в свою очередь, подключена к хосту B, имеющему подсеть 172.16.2.9. Заглушка подключается к интерфейсу G0/0 .3 из R3, где маска подсети равна 172.16.3.0 / 24 и, в свою очередь, подключена к хосту C, имеющему подсеть 172.16.3.9. ip route 172.16.2.0 255.255.255.0 S0/0/0 ip route 172.16.3.0 255.255.255.0 172.16.5.3 Пример 1 Добавление статических маршрутов в R1 В двух примерах команд ip route показаны два разных стиля инструкций пересылки. Первая команда показывает подсеть 172.16.2.0, маска 255.255.255.0, которая находится в локальной сети рядом с маршрутизатором R2. Эта же первая команда перечисляет интерфейс S0 / 0/0 маршрутизатора R1 как исходящий интерфейс. Этот маршрут в основном гласит: Чтобы отправить пакеты в подсеть с маршрутизатора R2, отправьте их через мой собственный локальный интерфейс S0/0/0 (который подключается к R2). Второй маршрут имеет такую же логику, за исключением использования различных инструкций пересылки. Вместо того, чтобы ссылаться на исходящий интерфейс R1, он вместо этого перечисляет IP-адрес соседнего маршрутизатора на WAN-канале в качестве маршрутизатора следующего прыжка. Этот маршрут в основном говорит следующее:чтобы отправить пакеты в подсеть с маршрут. Маршруты, созданные этими двумя командами ip route, на самом деле выглядят немного иначе в таблице IP-маршрутизации по сравнению друг с другом. Оба являются статическими маршрутами. Однако маршрут, который использовал конфигурацию исходящего интерфейса, также отмечается как подключенный маршрут; это всего лишь причуда вывода команды show ip route. В примере 2 эти два маршрута перечислены с помощью статической команды show ip route. Эта команда выводит подробную информацию не только о статических маршрутах, но также приводит некоторые статистические данные обо всех маршрутах IPv4. Например, в этом примере показаны две строки для двух статических маршрутов, настроенных в примере 2, но статистика утверждает, что этот маршрутизатор имеет маршруты для восьми подсетей. IOS динамически добавляет и удаляет эти статические маршруты с течением времени в зависимости от того, работает исходящий интерфейс или нет. Например, в этом случае, если интерфейс R1 S0/0/0 выходит из строя, R1 удаляет статический маршрут к 172.16.2.0/24 из таблицы маршрутизации IPv4. Позже, когда интерфейс снова открывается, IOS добавляет маршрут обратно в таблицу маршрутизации. Обратите внимание, что большинство сайтов используют протокол динамической маршрутизации для изучения всех маршрутов к удаленным подсетям, а не статические маршруты. Однако если протокол динамической маршрутизации не используется, сетевому администратору необходимо настроить статические маршруты для каждой подсети на каждом маршрутизаторе. Например, если бы маршрутизаторы имели только конфигурацию, показанную в примерах до сих пор, ПК А (из рис. 2) не смог бы получать пакеты обратно от ПК В, потому что маршрутизатор R2 не имеет маршрута для подсети ПК А. R2 понадобятся статические маршруты для других подсетей, как и R3. Наконец, обратите внимание, что статические маршруты, которые будут отправлять пакеты через интерфейс Ethernet - LAN или WAN, - должны использовать параметр IP-адреса следующего перехода в команде ip address, как показано в примере 2. Маршрутизаторы ожидают, что их интерфейсы Ethernet смогут достичь любого количества других IP-адресов в подключенной подсети. Ссылка на маршрутизатор следующего перехода определяет конкретное устройство в подключенной подсети, а ссылка на исходящий интерфейс локального маршрутизатора не определяет конкретный соседний маршрутизатор. Статические маршруты хоста Ранее в этой лекции маршрут хоста определялся как маршрут к одному адресу хоста. Для настройки такого статического маршрута команда ip route использует IP-адрес плюс маску 255.255.255.255, чтобы логика сопоставления соответствовала только этому одному адресу. Сетевой администратор может использовать маршруты хоста для направления пакетов, отправленных одному хосту по одному пути, а весь остальной трафик - в подсеть этого хоста по другому пути. Например, вы можете определить эти два статических маршрута для подсети 10.1.1.0 / 24 и Хоста 10.1.1.9 с двумя различными адресами следующего перехода следующим образом: ip route 10.1.1.0 255.255.255.0 10.2.2.2 ip route 10.1.1.9 255.255.255.255 10.9.9.9 Обратите внимание, что эти два маршрута перекрываются: пакет, отправленный в 10.1.1.9, который поступает на маршрутизатор, будет соответствовать обоим маршрутам. Когда это происходит, маршрутизаторы используют наиболее конкретный маршрут (то есть маршрут с наибольшей длиной префикса). Таким образом, пакет, отправленный на 10.1.1.9, будет перенаправлен на маршрутизатор следующего прыжка 10.9.9.9, а пакеты, отправленные в другие пункты назначения в подсети 10.1.1.0/24, будут отправлены на маршрутизатор следующего прыжка 10.2.2.2. Плавающие статические маршруты Затем рассмотрим случай, когда статический маршрут конкурирует с другими статическими маршрутами или маршрутами, изученными протоколом маршрутизации. То есть команда ip route определяет маршрут к подсети, но маршрутизатор также знает другие статические или динамически изученные маршруты для достижения этой же подсети. В этих случаях маршрутизатор должен сначала решить, какой источник маршрутизации имеет лучшее административное расстояние, а чем меньше, тем лучше, а затем использовать маршрут, полученный от лучшего источника. Чтобы увидеть, как это работает, рассмотрим пример, проиллюстрированный на рисунке 3, который показывает другую конструкцию, чем в предыдущих примерах, на этот раз с филиалом с двумя каналами WAN: одним очень быстрым каналом Gigabit Ethernet и одним довольно медленным (но дешево) Т1. В этом проекте сеть Open Shortest Path First Version 2 (OSPFv2) по первичному каналу, изучая маршрут для подсети 172.16.2.0/24. R1 также определяет статический маршрут по резервному каналу к той же самой подсети, поэтому R1 должен выбрать, использовать ли статический маршрут или маршрут, полученный с помощью OSPF. Сетевая диаграмма показывает интерфейс G0 / 0 маршрутизатора R1, который подключен к маршрутизатору R2 через ethernet через облако MPLS. Интерфейс S0 / 0 / 1 R1 соединен с маршрутизатором R3 по последовательной линии. R2 и R3 соединены в ядре облака корпоративной сети, имеющего подсеть 172.16.2.0/24. Маршрутизатор R1 достигает подсети либо по OSPF v1 по основному каналу, либо по статическому маршруту по резервному каналу. По умолчанию IOS отдает предпочтение статическим маршрутам, чем маршрутам, изученным OSPF. По умолчанию IOS предоставляет статическим маршрутам административное расстояние 1, а маршрутам OSPF-административное расстояние 110. Используя эти значения по умолчанию на рисунке 3, R1 будет использовать T1 для достижения подсети 172.16.2.0 / 24 в этом случае, что не является удачным решением. Вместо этого сетевой администратор предпочитает использовать маршруты, изученные OSPF, по гораздо более быстрому основному каналу и использовать статический маршрут по резервному каналу только по мере необходимости, когда основной канал выходит из строя. Чтобы отдавать предпочтение маршрутам OSPF, в конфигурации необходимо изменить настройки административного расстояния и использовать то, что многие сетевики называют плавающим статическим маршрутом. Плавающий статический маршрут перемещается в таблицу IP-маршрутизации или перемещается из нее в зависимости от того, существует ли в настоящее время лучший (меньший) маршрут административного расстояния, полученный протоколом маршрутизации. По сути, маршрутизатор игнорирует статический маршрут в то время, когда известен лучший маршрут протокола маршрутизации. Чтобы реализовать плавающий статический маршрут, вам необходимо использовать параметр в команде ip route, который устанавливает административное расстояние только для этого маршрута, делая значение больше, чем административное расстояние по умолчанию для протокола маршрутизации. Например, команда ip route 172.16.2.0 255.255.255.0 172.16.5.3 130 на маршрутизаторе R1 будет делать именно это - установив административное расстояние статического маршрута равным 130. Пока основной канал остается активным, а OSPF на маршрутизаторе R1 изучает маршрут для 172.16.2.0/24, с административным расстоянием по умолчанию 110, R1 игнорирует статический маршрут. Наконец, обратите внимание, что хотя команда show ip route перечисляет административное расстояние большинства маршрутов в виде первого из двух чисел в двух скобках, команда show ip route subnet явно указывает административное расстояние. В примере 3 показан образец, соответствующий этому последнему примеру. Статические маршруты по умолчанию Когда маршрутизатор пытается маршрутизировать пакет, он может не совпадать с IP-адресом назначения пакета ни с одним маршрутом. Когда это происходит, маршрутизатор обычно просто отбрасывает пакет. Маршрутизаторы могут быть сконфигурированы таким образом, чтобы они использовали либо статически настроенный, либо динамически изучаемый маршрут по умолчанию. Маршрут по умолчанию соответствует всем пакетам, так что, если пакет не соответствует какому-либо другому более конкретному маршруту в таблице маршрутизации, маршрутизатор может, по крайней мере, переслать пакет на основе маршрута по умолчанию. Классический пример, когда компании могут использовать статические маршруты по умолчанию в своих корпоративных сетях TCP / IP, - это когда компания имеет много удаленных узлов, каждый из которых имеет одно относительно медленное WAN-соединение. Каждый удаленный узел имеет только один возможный физический маршрут для отправки пакетов в остальную часть сети. Таким образом, вместо использования протокола маршрутизации, который отправляет сообщения по глобальной сети и использует драгоценную полосу пропускания глобальной сети, каждый удаленный маршрутизатор может использовать маршрут по умолчанию, который направляет весь трафик на центральный сайт, как показано на рисунке 4. Соединение состоит из трех маршрутизаторов: Core, B1 и B1000. Последовательные соединения показаны между маршрутизаторами Core - B1 и Core - B1000. Все эти маршрутизаторы подключены к подсети индивидуально. Маршрутизатор B1 отправляет все нелокальные пакеты в Core через интерфейс S0/0/1. Существует также связь между B1 и B1000. IOS позволяет настроить статический маршрут по умолчанию, используя специальные значения для полей подсети и маски в команде ip route: 0.0.0.0 и 0.0.0.0. Например, команда ip route 0.0.0.0 0.0.0.0 S0/0/1 создает статический маршрут по умолчанию на маршрутизаторе B1-маршрут, который соответствует всем IP-пакетам-и отправляет эти пакеты через интерфейс S0/0/1. В примере 4 показан пример статического маршрута по умолчанию с использованием маршрутизатора R2 с рисунка 1. Ранее на этом рисунке вместе с примером 3 был показан маршрутизатор R1 со статическими маршрутами к двум подсетям в правой части рисунка. Пример 4 завершает настройку статических IP-маршрутов путем настройки R2 в правой части рисунка 1 со статическим маршрутом по умолчанию для маршрутизации пакетов обратно к маршрутизаторам в левой части рисунка. Вывод команды show ip route содержит несколько новых и интересных фактов. Во-первых, он перечисляет маршрут с кодом S, что означает статический, но также со знаком *, что означает, что это кандидат в маршрут по умолчанию. Маршрутизатор может узнать о нескольких маршрутах по умолчанию, и затем маршрутизатор должен выбрать, какой из них использовать; * означает, что это, по крайней мере, кандидат на то, чтобы стать маршрутом по умолчанию. Чуть выше "шлюз последней надежды" относится к выбранному маршруту по умолчанию, который в данном случае является только что настроенным статическим маршрутом с исходящим интерфейсом S0/0/1.
img
Сегодняшняя статья будет посвящена основному протоколу динамической маршрутизации – BGP (Border Gateway Protocol). Почему основному? – Потому что с именно с помощью BGP организована топология всего Интернета. Итак, в данной статье разберем следующие моменты: Основные термины протокола BGP Принципы работы протокола BGP Типы сообщений протокола BGP Видео: Основы BGP за 7 минут Терминология Когда речь идёт BGP, первое на чем необходимо остановиться - это понятие автономной системы AS(Autonomus System). Автономная система - это совокупность точек маршрутизации и связей между ними, объединенная общей политикой взаимодействия, которая позволяет этой системе обмениваться данными с узлами, находящимися за ее пределами. AS характеризуется (с недавних пор 32 битным) номером ASN (Autonomus System Number) и пулом IP-адресов. Выдачей и того и другого занимается организация IANA (Internet Assigned Numbers Authority), делегируя контроль за распределением ASN и других интернет ресурсов, региональным регистраторам. Связность автономных систем достигается благодаря статической или динамической маршрутизации. Со статической маршрутизацией всё просто. Вы заходите на устройство и вручную прописываете маршрут до его ближайшего соседа. На практике, связать даже 10 маршрутизаторов между собой уже представляется довольно сложной задачей. Поэтому для больших сетей придумали динамическую маршрутизацию, при которой устройства автоматически делятся друг с другом информацией об имеющихся у них маршрутах и, более того, подстраиваются под изменения топологии. Как известно, протоколы динамической маршрутизации классифицируются по двум основным признакам: Тип работы протокола относительно AS IGP (Interior Gateway Protocol) – работают внутри автономной системы. Сюда относятся: RIP, OSPF, EIGRP, IS-IS EGP (Exterior Gateway Protocol) – работают вне автономных систем и обеспечивают их связность. Сюда относится BGP Алгоритм работы протокола Distance-Vector - знает маршруты только до своих ближайших соседей и обменивается с ними таблицей маршрутизации. (RIP, EIGRP) Link State – знает всю топологию сети и обменивается таблицей топологии со своими соседями (OSPF, IS-IS) Очевидно BGP не может быть Link State протоколом. Только представьте себе сколько автономных систем в Интернете, любой маршрутизатор просто выйдет из строя если получит такое количество информации. Итак, BGP – это протокол внешней маршрутизации, использующийся для соединения двух AS. Схема выглядит примерно так: Так как на BGP возложена великая задача – соединение автономных систем во всем Интернете, то он должен быть очень надежным. Для этих целей, в самом начале работы, BGP-маршрутизатор инициирует установление TCP сессии на 179 порт к своему соседу, происходит стандартных обмен SYN и ACK. Соединения по протоколу BGP должно быть абсолютно согласовано администраторами автономных систем, желающих организовать стык. Если, скажем, администратор AS402 запустил процесс BGP на маршрутизаторе BR2 (Border Router), указав в качестве соседа BR1 и его ASN, а администратор AS401 никаких действий не произвел, то TCP-сессия не поднимется и системы так и останутся несвязными. Кроме того, должны соблюдаться следующие условия: 179 порт не блокируется ACL (Access Control List) Маршрутизаторы пингуют друг друга При запуске BGP процесса ASN удаленной стороны был указан верно RouterID не совпадают Если TCP-сессия установлена успешно, то BGP-маршрутизаторы начинают обмен сообщениями OPEN, в котором сообщают свои ASN, RouterID и Hold timer. Hold timer это время, в течение которого будет поддерживаться TCP-сессия. Если условия, перечисленные ранее, не соблюдаются, например не совпадает информация о номере AS, то сообщением NOTIFICATION маршрутизатор, получивший неверный ASN уведомит об этом своего соседа и сбросит TCP-сессию. Если же все условия соблюдаются, то маршрутизаторы, с определенным интервалом, начинают высылать друг другу сообщения KEEPALIVE, означающие подтверждение параметров, принятых в OPEN и уведомление “я ещё жив”. Наконец, маршрутизаторы могут приступать к обмену маршрутной информацией по средствам сообщения UPDATE. Структура данного сообщения делится на две части: Path Attributes (Атрибуты пути). Здесь указывается из какой AS поступил маршрут, его происхождение и Next Hop для данного пути. NRLI (Network Layer Reachability Information). Здесь указывает информация непосредственно о сетях, подлежащих добавлению в таблицу маршрутизации, т.е IP-адрес сети и ее маска. Сообщение UPDATE будет передаваться каждый раз, когда один из маршрутизаторов получит информацию о новых сетях, а сообщение KEEPALIVE на протяжении всей TCP-сессии. Именно таким образом и работает маршрутизация во всем Интернете. Истории известно множество инцидентов, когда неправильная работа протокола BGP приводила к сбоям обширных частей глобальной сети, поэтому недооценивать его важность категорически нельзя.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59