По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Порой при попытке подключения к БД в режиме SQL аутентификации, вы можете получить следующую ошибку: A connection was successfully established with the server but then an error occurred during login process. (Provider: Shared Memory Provider, error: 0 – No process is on the end of the pipe.) (Microsoft SQL Server, Error: 233). У нас есть пару способов, которые могут помочь в решение этой проблемы. Включить TCP/IP стек По умолчанию, SQL сервер использует порт 1433, которые использует в качестве транспорта TCP. Нам нужно включить TCP/IP в настройках Configuration Manager: Подключитесь к SQL серверу; Откройте SQL Server Configuration Manager. Перейдите в настройку SQL Server Network Configuration → Protocols for %название%; Проверяем, чтобы TCP/IP был включен (Enabled). Если выключен, то дважды левой кнопкой мыши нажмите на опцию и выберите Enabled = Yes; После указанного вида работ службу (сервис) SQL необходимо перезагрузить. Named Pipes Так называемый Named Pipes (именованный канал) обеспечивает взаимодействие между процессами на одной машине, без снижения производительности. Эту опцию нужно включить, если вы столкнулись с 233 ошибкой: Подключитесь к SQL серверу; Откройте SQL Server Configuration Manager. Перейдите в настройку SQL Server Network Configuration → Protocols for %название%; Проверяем, чтобы Named Pipes был включен (Enabled). Если выключен, то дважды левой кнопкой мыши нажмите на опцию и выберите Enabled = Yes; Данная опция соседствует с параметром TCP/IP, который мы включали ранее (см. скриншот выше). Гре***ый фаеравол! На самом деле, фаервол это хорошо. Он защищает от атак наши системы. Но порой, из – за него у нас не работают нужные компоненты, и, в том числе, появляется ошибка 233. Добавим 1433 порт в исключения. Для этого: Запустить службу WF.msc (открыв меню Пуск и набрав в поиске); В настройка Windows Firewall with Advanced Security, слева, нажмите на Inbound Rules, после чего нажмите на New Rule в открывшемся меню справа; В Rule Type выбираем Port, нажимаем Next; В разделе Protocol and Ports, укажите TCP. В пункте Specific local ports указываем 1433. Нажмите Next; В разделе Action (действия, что делать?), выбираем Allow the connection, и нажимаем Next; В разделе Profile применяем политику для всех видов (Domain, Private, Public). Важно! - настройка данного пункта зависит от ваших корпоративных политик безопасности и мы не рекомендуем открывать Public; В финальном окне даем имя нашему правилу, например, Allow inbound SQL; Проверяем удаленные подключения Важно не забыть разрешить удаленные подключения к серверу. Сделать это не трудно: Открываем SQL Server Management Studio и подключаемся (доменная или SQL аутентификация); Выбираем сервер (верхняя сущность в иерархии слева, в меню), нажимаем на него правой кнопкой мыши и выбираем пункт Properties; В открывшемся окне нажимаем на Connections. В меню настройки нажимаем на чекбокс Allow remote connections to this server; Нажимаем OK; Перезагружаем сервис SQL, проверяем, пропала ли ошибка? :)
img
Веб-разработчики являются неотъемлемой частью эпохи Интернета. Веб-сайты и мобильные страницы, с которых мы получаем большую часть нашей информации, совершаем покупки, бронируем билеты и так далее, созданы и управляются веб-разработчиками. Веб-разработчики - это люди, которые проектируют и разрабатывают веб-сайты и мобильные приложения. Они используют несколько языков программирования для реализации необходимых функций. Веб-приложение или мобильное приложение имеют множество различных компонентов, которые взаимодействуют друг с другом для создания всей функциональности системы. Из-за этого сложного характера веб-разработчиков можно разделить на Front-End, Back-End и Full-stack разработчиком. Как стать веб-разработчиком Front-End веб-разработчики также известны как разработчики на стороне клиента. Они работают над внешним видом и ощущением веб-приложения. Вы, наверное, не раз слышали эти модные аббревиатуры UX и UI, которые как раз обозначают User Experience (пользовательский опыт) и User Interface (пользовательский интерфейс), за которые ответственен фронтенд разработчик. Back-End разработчики используют языки программирования и реляционные базы данных для интеграции внешнего интерфейса с внутренним. Со временем наборы умений фронт-энда и бэк-энда разработчиков пересекались, и в настоящее время индустрия предпочитает разработчиков с мастерством в обоих. Такие эксперты называются Full Stack Developers, и они обладают навыками как Front-End, так и Back-End разработки. Давайте рассмотрим навыки, необходимые для того, чтобы стать веб-разработчиком. 1. Графика или пользовательский интерфейс (UI) Знание графики или пользовательского интерфейса имеет большое значение для понимания эстетического аспекта веб-дизайна. Это позволяет выявлять и устранять проблемы совместимости между веб-браузерами при отображении страниц. 2. HTML, CSS, JavaScript Это строительные блоки веб-разработки. Они позволяют разработчику создавать структуру, стиль и содержание веб-сайта. Дополнительное знание сторонних библиотек, таких как jQuery, LESS, Angular и React JS, крайне желательно. HTML определяет структуру представления страниц. CSS обеспечивает контроль над макетом, позволяя создавать точные секционные модули, а также позволяет разработчикам настраивать макет страницы, цвета, шрифты и добавлять эффекты анимации. JavaScript является продвинутым по своей природе, что помогает сделать веб-страницу более интерактивной. Он предлагает изысканные функции, которые помогают сделать веб-страницы более отзывчивыми. Зная DOM, JSON позволяет вам манипулировать Javascript кодом. 3. CMS Система управления контентом (Content Management Systems) - это приложение, которое позволяет пользователям эффективно публиковать и управлять контентом веб-сайта. Это интуитивно понятный пользовательский интерфейс, который помогает в создании и изменении содержимого веб-страницы. Несмотря на то, что здесь не требуется опыта в программировании бэкэнда, знание HTML и CSS необходимо. В зависимости от используемой CMS вы можете реализовать расширенные функции, установив плагины и расширения. Wordpress, Joomla, Drupal, Magento, Laravel, Typo3, Serendipity, Chamilo - вот некоторые из них, которые стоит добавить в вашу базу знаний. 4. UX Пользовательский опыт не имеет прямого отношения к знаниям о дизайне; напротив, это относится к аналитическому и техническому пониманию того, как должно работать веб-приложение. Это понимание факторов, которые удерживают пользователей на сайте, помогают им найти то, что они ищут, и оптимизируют поддерживаемые функции. 5. Языки программирования Языки программирования помогают внедрять интерактивные функции на сайт. Они несут ответственность за возможность хранить, обновлять, манипулировать и получать доступ к данным из базы данных в пользовательский интерфейс. Для веб-разработки основными языками программирования, с которыми нужно ознакомиться, являются Java, Javascript, .NET, PHP, Perl, Python, C, C ++ и Ruby. Выбор языка программирования в основном зависит от программного стека и типа разрабатываемого проекта. Про выбор языка программирования можно прочитать в нашей статье. 6. СУБД Веб-приложения должны хранить данные, с возможностью для доступа к ним, и когда это необходимо, что требует хорошего знания системы управления реляционными базами данных. Веб-разработчик должен хорошо понимать его синтаксис для создания, обновления, манипулирования и доступа к базе данных до ее оптимального уровня. Он должен понимать разницу между реляционной и нереляционной базой данных наряду со знанием XML/JSON. Понимание особенностей реляционной базы данных, веб-хранилища, знание NoSQL и связей с базами данных укрепляют карьеру веб-разработчика. 7. Программный стек Это совокупность программных подсистем, которые вместе работают вместе, чтобы создать платформу для поддержки приложения без необходимости в дополнительном программном обеспечении. Говорят, что приложение «работает поверх» определенного программного стека. Независимо от программного стека, всегда существует сходство в архитектуре программного стека. Примеры программных стеков для веб-разработки: LAMP [Linux | Apache | MySQL | PHP] MERN [MongoDB | Express | React | Node.js] MEAN [MongoDB | Express | Angular | Node.js] Понимание стека программного обеспечения требуется при работе над проектом, поскольку оно дает лучшее техническое представление о разрабатываемом программном обеспечении. Вы можете оптимизировать производительность, предлагать изменения и устранять технические проблемы. 8. SEO Поисковая оптимизация (Search Engine Optimization) не может считаться обязательным требованием для веб-разработчика. Но знания в этой области помогут вам с самого начала структурировать веб-сайт как оптимизированный для SEO. Это, в конечном счете, облегчит работу профессионалов SEO, но более того, веб-приложение имеет больше шансов на успех. Итог Наличие всех вышеперечисленных навыков дает вам возможность выбора из нескольких карьерных возможностей. На сегодняшнем рынке веб-разработчики должны иметь более одного определенного набора навыков.
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59