По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для управлениями сертификатами SSL в графическом интерфейсе FreePBX 13 создан специальный модуль - Certificate Management. Но, перед тем как перейти к его настройке, давайте вспомним, для чего же нужен сертификат и что же такое SSL в Asterisk? SSL и FreePBX Сертификат SSL позволяет вашему FreePBX иметь уникальную цифровую подпись, с помощью которой, каждый раз при обращении к интерфейсу будет создаваться защищенное соединение между web – сервером и клиентским устройством. SSL сертификат включает в себя информацию о его владельце и открытый ключ. Выдачей SSL сертификатов занимается специальный центр сертификации (Certification authority), честность которого априори неоспорима. Помимо этого, сертификат позволяет совершать звонки по защищенному транспортному протоколу TLS и шифровать голосовые потоки через SRTP. Генерация CSR Приступаем к получению сертификата. Центр сертификации попросит вас предоставить сгенерированный CSR файл (Certificate Signing Request). Это является обязательной частью подачи заявления на сертификат, и содержит в себе различные данные об организации, такие как наименование, полное имя домена, код страны и прочие. Перейдем во вкладку Admin -> Certificate Management. В открывшемся окне модуля нажимаем + Generate CSR. Откроется окно генерации CSR файла: Разберемся поподробнее с каждым из пунктов: Name - имя для сгенерированного CSR файла. Когда файл будет сгенерирован, он будет иметь название, как указано в этом поле Common Name (Host Name) (CN) - полное имя домена Organization Name (O) - полное наименование организации, как указано в учредительных документах Organization Unit (OU) - наименование подразделения (отдела), на который выписывается данный сертификат Country (C) - код страны из двух букв. В нашем случае RU. State/Province (ST) - наименование области или края, в котором вы находитесь. В нашем случае мы оставили это поле пустым City or Locality (L) - укажите город. Мы указали Moscow По окончанию настроек нажмите Generate CSR. После того, как CSR файл будет сгенерирован, он станет доступен для скачивания в главном интерфейсе модуля. Для его загрузки, нажмите на кнопку Download CSR. Сам файл представляет из себя ключ, заключенный в теги начала и окончания: -----BEGIN CERTIFICATE REQUEST----- MIIC0zCCAbsCAQAwgY0xFDASBgNVBAMTC21lcmlvbmV0LnJ1MRgwFgYDVQQKEw9N ZXJpb24gTmV0d29ya3MxCzAJBgNVBAsTAklUMQswCQYDVQQGEwJSVTEMMAoGA1UE CBMDUUxEMQ8wDQYDVQQHEwZNb3Njb3cxIjAgBgkqhkiG9w0BCQEWE2ludmFsaWRA ZXhhbXBsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDKvJYr== -----END CERTIFICATE REQUEST----- После этого, вам необходимо написать заявление в центр сертификации и приложить к нему этот файл, после чего вы сможете получить свой SSL сертификат. Загрузка сертификата После того, как мы получили сертификат от сертификационного центра (CA), его необходимо загрузить на сервер. Нажимаем на кнопку New Certificate и выбираем Upload Certificate Name - имя для сертификата Description - описание сертификата. Используется только внутри модуля и не влияет на импорт сертификата. Passphrase - кодовая фраза, то есть пароль. Необходима для доступа к сертификату и генерации сертификатов на стороне клиента. Если вы не укажете пароль в данном поле, то вам придется указывать его каждый раз, когда потребуется новый сертификат. К тому же, отсутствие пароля приводит к незащищенности приватного ключа сертификата. CSR Reference - в данном поле выберите сгенерированный CSR файл на предыдущем этапе. Поле Certificate - откройте файл сертификата, который вам предоставил сертификационный центр и полностью копируйте его в это поле, начиная от тэга «-----BEGIN CERTIFICATE-----» до «-----END CERTIFICATE-----» Поле Trusted Chain - порой, центр сертификации (CA), помимо самого сертификата может предоставить вам целый набор файлов. Они называется Trusted Chain, то есть цепочки доверия. Последовательно откройте каждый из файлов и скопируйте их содержимое в это поле. По окончанию настроек нажмите Generate Certificate. По окончанию настроек вы сможете увидеть ваш сертификат в общем списке. В процессе эксплуатации он доступен для редактирования: Бесплатный сертификат Let’s Encrypt Интерфейс FreePBX 13 имеет встроенную возможность настройки бесплатного SSL сертификата с помощью сертификационного центра Let’s Encrypt. Чтобы воспользоваться бесплатным сертификатом, у вашего сервера должно быть настроено доменное имя, и его оно должно резолвиться по его IP – адресу. Помимо этого, следующие хосты должны быть добавлены в разрешенные в настройках фаервола: outbound1.letsencrypt.org outbound2.letsencrypt.org mirror1.freepbx.org mirror2.freepbx.org
img
Прежде чем приступить к изучению виртуальной локальной сети (VLAN), необходимо иметь определенное представление о локальной сети. Локальную сеть можно рассмотреть с двух сторон. С одной стороны, локальная сеть это все пользовательские устройства, серверы, коммутаторы, маршрутизаторы, кабели и точки беспроводного доступа, расположенные в одном месте. С другой стороны, в более узком понимании определения локальной сети, позволяет нам освоить концепцию виртуальной локальной сети: локальная сеть включает все устройства в одном широковещательном домене. p> Широковещательный домен это устройства, подключенные к локальной сети, таким образом, что, когда одно из устройств отправляет широковещательный кадр, все остальные устройства получают копию этого кадра. Таким образом, понятие локальной сети и широковещательного домена является практически одинаковым. Коммутатор, с настройками по умолчанию, считает, что все его интерфейсы находятся в одном широковещательном домене. То есть, когда широковещательный кадр приходит на один конкретный порт коммутатора, устройство пересылает этот широковещательный кадр на все остальные свои порты. В связи с таким принципом работы коммутатора, чтобы создать два разных широковещательных домена, придется купить два разных коммутатора для локальной сети Ethernet, как показано на рисунке: Показаны два домена: домен 1 (подсеть 1) и домен 2 (подсеть 2). В первом домене два компьютера, а именно ПК1 и ПК2, подключены к коммутатору SW1 для создания широковещательного домена 1. Аналогично, во втором домене два компьютера, а именно ПК3 и ПК4, подключены к коммутатору SW2 для создания широковещательного домена 2. Используя два VLAN’а, можно организовать те же две сети, что изображены на рисунке 1- создать два широковещательных домена с помощью одного коммутатора. С VLAN’нами коммутатор может настроить некоторые интерфейсы в один широковещательный домен, а некоторые в другой, создавая несколько широковещательных доменов. Эти отдельные широковещательные домены, созданные коммутатором, называются виртуальными локальными сетями (VLAN). Рисунок ниже демонстрирует использование одного коммутатора для создания двух VLAN’ов, рассматривая порты в каждом VLAN’е как полностью самостоятельные. Коммутатор никогда не перешлет кадр, отправленный ПК1 (VLAN 1) либо ПК3 либо ПК4 (VLAN 2). Из рисунка мы видим, что используется один коммутатор для нескольких широковещательных доменов. Из широковещательного домена 1 (подсеть 1) две системы ПК1 и ПК2 подключены к коммутатору SW1. Из широковещательного домена 2 (подсеть 2) к коммутатору SW1 подключены две системы ПК3 и ПК4. Проектирование локальных сетей кампуса с использованием большего количества VLAN’ов, в каждом из которых используется минимальное количество коммутационного оборудования, часто помогает улучшить локальную сеть во многих отношениях. Например, широковещательная передача, отправленная одним узлом во VLAN1, будет приниматься и обрабатываться всеми другими узлами этого VLAN1-но не узлами из другого VLAN. Чем меньше посторонних узлов в сети получают широковещательные кадры, тем выше безопасность локальной сети. Это всего лишь несколько причин для разделения хостов на разные VLAN. В следующем списке перечислены наиболее распространенные причины, по которым следует создавать VLAN’ны: Чтобы уменьшить нагрузку на процессор на каждом устройстве; повышение производительности узла, путем уменьшения числа устройств, которые принимают каждый широковещательный кадр; Повысить уровень безопасности за счет уменьшения числа хостов, получающих копии кадров, которые коммутаторы отправляют (broadcasts, multicasts, and unknown unicasts); Повышение безопасности хостов за счет применения различных политик безопасности для каждого VLAN; Создание подразделений, группирующих пользователей по отделам или группам, которые работают вместе, а не по физическому местоположению; Уменьшение нагрузки для протокола связующего дерева (STP) путем ограничения VLAN одним коммутатором доступа.
img
Модель Open Systems Interconnection (OSI) – это скелет, фундамент и база всех сетевых сущностей. Модель определяет сетевые протоколы, распределяя их на 7 логических уровней. Важно отметить, что в любом процессе, управление сетевой передачей переходит от уровня к уровню, последовательно подключая протоколы на каждом из уровней. Видео: модель OSI за 7 минут Нижние уровни отвечают за физические параметры передачи, такие как электрические сигналы. Да – да, сигналы в проводах передаются с помощью представления в токи :) Токи представляются в виде последовательности единиц и нулей (1 и 0), затем, данные декодируются и маршрутизируются по сети. Более высокие уровни охватывают запросы, связанные с представлением данных. Условно говоря, более высокие уровни отвечают за сетевые данные с точки зрения пользователя. Модель OSI была изначально придумана как стандартный подход, архитектура или паттерн, который бы описывал сетевое взаимодействие любого сетевого приложения. Давайте разберемся поподробнее? #01: Физический (physical) уровень На первом уровне модели OSI происходит передача физических сигналов (токов, света, радио) от источника к получателю. На этом уровне мы оперируем кабелями, контактами в разъемах, кодированием единиц и нулей, модуляцией и так далее. Среди технологий, которые живут на первом уровне, можно выделить самый основной стандарт - Ethernet. Он есть сейчас в каждом доме. Отметим, что в качестве носителя данных могут выступать не только электрические токи. Радиочастоты, световые или инфракрасные волны используются также повсеместно в современных сетях. Сетевые устройства, которые относят к первому уровню это концентраторы и репитеры – то есть «глупые» железки, которые могут просто работать с физическим сигналом, не вникая в его логику (не декодируя). #02: Канальный (data Link) уровень Представьте, мы получили физический сигнал с первого уровня – физического. Это набор напряжений разной амплитуды, волн или радиочастот. При получении, на втором уровне проверяются и исправляются ошибки передачи. На втором уровне мы оперируем понятием «фрейм», или как еще говорят «кадр». Тут появляются первые идентификаторы – MAC – адреса. Они состоят из 48 бит и выглядят примерно так: 00:16:52:00:1f:03. Канальный уровень сложный. Поэтому, его условно говоря делят на два подуровня: управление логическим каналом (LLC, Logical Link Control) и управление доступом к среде (MAC, Media Access Control). На этом уровне обитают такие устройства как коммутаторы и мосты. Кстати! Стандарт Ethernet тоже тут. Он уютно расположился на первом и втором (1 и 2) уровнях модели OSI. #03: Сетевой (network) уровень Идем вверх! Сетевой уровень вводит термин «маршрутизация» и, соответственно, IP – адрес. Кстати, для преобразования IP – адресов в MAC – адреса и обратно используется протокол ARP. Именно на этом уровне происходит маршрутизация трафика, как таковая. Если мы хотим попасть на сайт wiki.merionet.ru, то мы отправляем DNS – запрос, получаем ответ в виде IP – адреса и подставляем его в пакет. Да – да, если на втором уровне мы используем термин фрейм/кадр, как мы говорили ранее, то здесь мы используем пакет. Из устройств здесь живет его величество маршрутизатор :) Процесс, когда данные передаются с верхних уровней на нижние называется инкапсуляцией данных, а когда наоборот, наверх, с первого, физического к седьмому, то этот процесс называется декапсуляцией данных #04: Транспортный (transport) уровень Транспортный уровень, как можно понять из названия, обеспечивает передачу данных по сети. Здесь две основных рок – звезды – TCP и UDP. Разница в том, что различный транспорт применяется для разной категории трафика. Принцип такой: Трафик чувствителен к потерям - нет проблем, TCP (Transmission Control Protocol)! Он обеспечивает контроль за передачей данных; Немного потеряем – не страшно - по факту, сейчас, когда вы читаете эту статью, пару пакетов могло и потеряться. Но это не чувствуется для вас, как для пользователя. UDP (User Datagram Protocol) вам подойдет. А если бы это была телефония? Потеря пакетов там критична, так как голос в реальном времени начнет попросту «квакать»; #05: Сеансовый (session) уровень Попросите любого сетевого инженера объяснить вам сеансовый уровень. Ему будет трудно это сделать, инфа 100%. Дело в том, что в повседневной работе, сетевой инженер взаимодействует с первыми четырьмя уровнями – физическим, канальным, сетевым и транспортным. Остальные, или так называемые «верхние» уровни относятся больше к работе разработчиков софта :) Но мы попробуем! Сеансовый уровень занимается тем, что управляет соединениями, или попросту говоря, сессиями. Он их разрывает. Помните мем про «НЕ БЫЛО НИ ЕДИНОГО РАЗРЫВА»? Мы помним. Так вот, это пятый уровень постарался :) #06 Уровень представления (presentation) На шестом уровне творится преобразование форматов сообщений, такое как кодирование или сжатие. Тут живут JPEG и GIF, например. Так же уровень ответственен за передачу потока на четвертый (транспортный уровень). #07 Уровень приложения (application) На седьмом этаже, на самой верхушке айсберга, обитает уровень приложений! Тут находятся сетевые службы, которые позволяют нам, как конечным пользователям, серфить просторы интернета. Гляньте, по какому протоколу у вас открыта наша база знаний? Правильно, HTTPS. Этот парень с седьмого этажа. Еще тут живут простой HTTP, FTP и SMTP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59