По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, бро! В статье расскажем в чем разница между RIPv1 (Routing Information Protocol Version 1) и его продолжение RIPv2. Погнали? Про Routing Information Protocol Version 1 (RIPv1) Прямо и по пунктам: RIPv1 это Distance-Vector протокол. Если переводить на русский - дистанционно-векторный. ; Distance vector routing - так называемая дистанционно-векторная маршрутизация, главный принцип которой основан на вычислении специальных метрик, которые определяют расстояние (количество узлов) до сети назначения RIPv1 это classfull протокол. Это означает, что он не отправляет маску подсети в апдейтах маршрутизации; RIPv1 не поддерживает VLSM (Variable Length Subnet Masking); VLSM (Variable Length Subnet Masking) - метод эффективного использования IP – адресации, который избавляет от привязки к классу сети (класс A, класс B, класс C). VLSM позволяет дробить подсеть на подсеть и так далее. Тем самым, мы можем эффективно использовать адресное пространство согласно реальных потребностей, а не класса сети; RIPv1 поддерживает максимум 15 хопов! Это означает, что любой маршрутизатор, который расположен от вас в больше, чем 15 узлов (маршрутизаторов) будет отмечен как недоступный; Раз в 30 секунд RIPv1 отправляет широковещательные апдейты маршрутизации – каждый узел должен принять и обработать этот апдейт; Первая версия RIP не поддерживает авторизация апдейтов маршрутизации – это означает, что потенциально, роутер может обновить таблицу маршрутизации от любого источника; Вот такой он, RIP первой версии. Двигаем дальше и посмотрим, а на что способен его брат – RIP второй версии? Про Routing Information Protocol Version 2 (RIPv2) RIPv2 это гибридный протокол. Он реализован на базе Distance-Vector, но так же поддерживает часть алгоритмов Link State маршрутизации, то есть, может отслеживать состояние каналов; Link State routing - отслеживает состояние каналов и отправляет LSA (Link-state advertisement) пакеты, в которых рассказывает о состоянии своих каналов. Примером link state протокола маршрутизации является OSPF RIPv2 - classless протокол. В отличие от своего старшего брата первой версии, второая версия умеет отправлять маску подсети в апдейтах маршрутизации; RIPv2 поддерживает VLSM!; RIPv2, как и RIPv1 поддерживает максимум 15 хопов; RIPv2 отправляет мультикаст сообщения об апдейтах на адрес 224.0.0.9. Это уменьшает нагрузку на сеть и в первую очередь на узлы, на которых не запущен RIP; Вторая версия RIP поддерживает аутентификацию апдейтов маршрутизации. Это значит, что теперь нельзя будет подсунуть ложный апдейт роутеру (в целом, этим могли пользоваться злоумышленники) – только авторизированные источники;
img
Выходим на новый уровень. Для изучения следующей темы вы уже должны хорошо понимать связующее дерево. Связующее дерево (Spanning Tree Protocol STP) — это важная тема. Есть много вещей, которые могут пойти не так, и в этой статье мы рассмотрим ряд инструментов, которые мы можем использовать для защиты нашей топологии связующего дерева. Для профессионалов PortFast: мы видели это в статье о spanning tree и rapid spanning tree. Он настроит порт доступа как пограничный порт, поэтому он переходит в режим forwarding немедленно. BPDU Guard: это отключит (err-disable) интерфейс, который имеет настроенный PortFast, если он получает BPDU. BPDUFilter: это будет подавлять BPDU на интерфейсах. Root Guard: это предотвратит превращение соседнего коммутатора в корневой мост, даже если он имеет лучший идентификатор моста. UplinkFast: мы видели это в статье о связующем дереве. Он улучшает время конвергенции. BackboneFast: мы также видели это в статье о связующем дереве. Оно улучшает время конвергенции, если у вас есть сбой косвенной связи. UplinkFast и BackboneFast не требуются для rapid spanning tree, поскольку оно уже реализовано по умолчанию. Мы начнем с BPDUguard: В топологии выше мы имеем идеально работающую топологию остовного дерева. По умолчанию связующее дерево будет отправлять и получать BPDU на всех интерфейсах. В нашем примере у нас есть компьютер, подключенный на интерфейсе fa0/2 коммутатора B. Есть кто-то, кто с враждебными намерениями мог бы запустить инструмент, который сгенерирует BPDU с превосходящим ID моста. Что же произойдет- так это то, что наши коммутаторы будут считать, что корневой мост теперь может быть достигнут через коммутатор B, и у нас будет повторный расчет связующего дерева. Звучит не очень хорошо, правда? Можно поставить человека (хакера) в середине топологии для атаки так, чтобы никто не знал. Представьте себе, что хакер подключает свой компьютер к двум коммутаторам. Если хакер станет корневым мостом, то весь трафик от коммутатора А или коммутатора C к коммутатору В будет проходить через него. Он запустит Wireshark и подождет, пока произойдет чудо. BPDUguard гарантирует, что, когда мы получаем BPDU на интерфейс, интерфейс перейдет в режим err-disable. Чтобы продемонстрировать работу BPDUguard будем использовать два коммутатора. Настроем интерфейс fa0/16 коммутатора B так, что он перейдет в режим err-disable, если он получит BPDU от коммутатора C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree bpduguard enable Вот как вы включаете его в интерфейсе. Имейте в виду, что обычно вы никогда не будете делать это между коммутаторами. Вы должны настроить это на интерфейсах в режиме доступа, которые подключаются к компьютерам. А-а... вот и наш интерфейс. SwitchB(config-if)#no spanning-tree bpduguard SwitchB(config-if)#shutdown SwitchB(config-if)#no shutdown Избавиться от BPDUguard можно используя команды shut/no shut, чтобы сделать интерфейс снова рабочим. SwitchB(config)#spanning-tree portfast bpduguard Вы также можете использовать команду spanning-tree portfast bpduguard. Это позволит глобально активировать BPDUguard на всех интерфейсах, которые имеют включенный portfast. SwitchB(config)#spanning-tree portfast default Portfast также может быть включен глобально для всех интерфейсов, работающих в режиме доступа. Это полезная команда, позволяющая проверить свою конфигурацию. Вы видите, что portfast и BPDUGuard были включены глобально. BPDUGuard переведет интерфейс в режим err-disable. Кроме того, можно фильтровать сообщения BPDU с помощью BPDUfilter. BPDUfilter может быть настроен глобально или на уровне интерфейса и есть разница: Глобальный: если вы включите bpdufilter глобально, любой интерфейс с включенным portfast станет стандартным портом. Интерфейс: если вы включите BPDUfilter на интерфейсе, он будет игнорировать входящие BPDU и не будет отправлять никаких BPDU. Вы должны быть осторожны, когда включаете BPDUfilter на интерфейсах. Вы можете использовать его на интерфейсах в режиме доступа, которые подключаются к компьютерам, но убедитесь, что вы никогда не настраиваете его на интерфейсах, подключенных к другим коммутаторам. Если вы это сделаете, вы можете получить цикл. Для демонстрации работы BPDUfilter мы будем снова использовать коммутатор B и коммутатор C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable Он перестанет посылать BPDU и будет игнорировать все, что будет получено. SwitchB#debug spanning-tree bpdu Вы не увидите никаких интересных сообщений, но если вы включите отладку BPDU, то заметите, что он больше не отправляет никаких BPDU. Если вы хотите, вы также можете включить отладку BPDU на коммутаторе C, и вы увидите, что нет ничего от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable Давайте избавимся от команды BPDUfilter на уровне интерфейса. SwitchB(config)#spanning-tree portfast bpdufilter default Вы также можете использовать глобальную команду для BPDUfilter. Это позволит включить BPDUfilter на всех интерфейсах, которые имеют portfast. Еще один вариант, с помощью которого мы можем защитить наше связующее дерево, - это использовать RootGuard. Проще говоря, RootGuard позаботится о том, чтобы вы не принимали определенный коммутатор в качестве корневого моста. BPDU отправляются и обрабатываются нормально, но, если коммутатор внезапно отправляет BPDU с идентификатором верхнего моста, вы не будете принимать его в качестве корневого моста. Обычно коммутатор D становится корневым мостом, потому что у него есть лучший идентификатор моста, к счастью, у нас есть RootGuard на коммутатое C, так что этого не произойдет! Рассмотрим с вами конфигурацию с коммутатором B и коммутатором C. SwitchB(config)#spanning-tree vlan 1 priority 4096 Давайте убедимся, что коммутатор C не является корневым мостом. Вот как мы включаем RootGuard на интерфейсе. SwitchB#debug spanning-tree events Spanning Tree event debugging is on Не забудьте включить отладку, если вы хотите увидеть события. SwitchC(config)#spanning-tree vlan 1 priority 0 Давайте перенастроим коммутатор B, изменив приоритет на наименьшее возможное значение 0 на коммутаторе C. Он теперь должен стать корневым мостом. Вот так коммутатор B не будет принимать коммутатор C в качестве корневого моста. Это заблокирует интерфейс для этой VLAN. Вот еще одна полезная команда, чтобы проверить, работает ли RootGuard. Связующее дерево становится все более безопасным с каждой минутой! Однако есть еще одна вещь, о которой мы должны подумать… Если вы когда-либо использовали волоконные кабели, вы могли бы заметить, что существует другой разъем для передачи и приема трафика. Если один из кабелей (передающий или принимающий) выйдет из строя, мы получим однонаправленный сбой связи, и это может привести к петлям связующего дерева. Существует два протокола, которые могут решить эту проблему: LoopGuard UDLD Давайте начнем с того, что внимательно рассмотрим, что произойдет, если у нас произойдет сбой однонаправленной связи. Представьте себе, что между коммутаторами волоконно-оптические соединения. На самом деле имеется другой разъем для передачи и приема. Коммутатор C получает BPDU от коммутатора B, и в результате интерфейс стал альтернативным портом и находится в режиме блокировки. Теперь что-то идет не так... transmit коннектор на коммутаторе B к коммутатору C был съеден мышами. В результате коммутатор C не получает никаких BPDU от коммутатора B, но он все еще может отправлять трафик для переключения между ними. Поскольку коммутатор C больше не получает BPDU на свой альтернативный порт, он перейдет в forwarding режим. Теперь у нас есть one way loop (петля в один конец), как указано зеленой стрелкой. Один из методов, который мы можем использовать для решения нашего однонаправленного сбоя связи — это настройка LoopGuard. Когда коммутатор отправляет, но не получает BPDU на интерфейсе, LoopGuard поместит интерфейс в состояние несогласованности цикла и заблокирует весь трафик! Мы снова будем использовать эту топологию для демонстрации LoopGuard. SwitchA(config)#spanning-tree loopguard default SwitchB(config)#spanning-tree loopguard default SwitchC(config)#spanning-tree loopguard default Используйте команду spanning-tree loopguard по умолчанию, чтобы включить LoopGuard глобально SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable В примере у нас нет никаких волоконных разъемов, поэтому мы не сможем создать однонаправленный сбой связи. Однако мы можем смоделировать его с помощью BPDUfilter на интерфейсе SwitchB fa0/16. Коммутатор C больше не будет получать никаких BPDU на свой альтернативный порт, что заставит его перейти в режим переадресации. Обычно это вызвало бы петлю, но, к счастью, у нас есть настроенный LoopGuard. Вы можете увидеть это сообщение об ошибке, появляющееся в вашей консоли. Проблема решена! SwitchC(config-if)#spanning-tree guard loop Если вы не хотите настраивать LoopGuard глобально, вы т можете сделать это на уровне интерфейса. Другой протокол, который мы можем использовать для борьбы с однонаправленными сбоями связи, называется UDLD (UniDirectional Link Detection). Этот протокол не является частью инструментария связующего дерева, но он помогает нам предотвратить циклы. Проще говоря, UDLD — это протокол второго уровня, который работает как механизм keepalive. Вы посылаете приветственные сообщения, вы их получаете, и все прекрасно. Как только вы все еще посылаете приветственные сообщения, но больше их не получаете, вы понимаете, что что-то не так, и мы блокируем интерфейс. Убедитесь, что вы отключили LoopGuard перед работой с UDLD. Мы будем использовать ту же топологию для демонстрации UDLD. Существует несколько способов настройки UDLD. Вы можете сделать это глобально с помощью команды udld, но это активирует только UDLD для оптоволоконных линий связи! Существует два варианта для UDLD: Normal (default) Aggressive Когда вы устанавливаете UDLD в нормальное состояние, он помечает порт как неопределенный, но не закрывает интерфейс, когда что-то не так. Это используется только для того, чтобы «информировать» вас, но это не предотвратит циклы. Агрессивный - это лучшее решение, когда пропадает связь с соседом. Он будет посылать кадр UDLD 8 раз в секунду. Если сосед не отвечает, интерфейс будет переведен в режим errdisable. SwitchB(config)#interface fa0/16 SwitchB(config-if)#udld port aggressive SwitchC(config)#interface fa0/16 SwitchC(config-if)#udld port aggressive Мы будем использовать коммутатор B и C, чтобы продемонстрировать UDLD. Будем использовать агрессивный режим, чтобы мы могли видеть, что интерфейс отключается, когда что-то не так. Если вы хотите увидеть, что UDLD работает, вы можете попробовать выполнить отладку. Теперь самое сложное будет имитировать однонаправленный сбой связи. LoopGuard был проще, потому что он был основан на BPDUs. UDLD запускает свой собственный протокол уровня 2, используя собственный MAC-адрес 0100.0ccc.сссс. SwitchC(config)#mac access-list extended UDLD-FILTER SwitchC(config-ext-macl)#deny any host 0100.0ccc.cccc SwitchC(config-ext-macl)#permit any any SwitchC(config-ext-macl)#exit SwitchC(config)#interface fa0/16 SwitchC(config-if)#mac access-group UDLD-FILTER in Это творческий способ создавать проблемы. При фильтрации MAC-адреса UDLD он будет думать, что существует сбой однонаправленной связи! Вы увидите много отладочной информации, но конечным результатом будет то, что порт теперь находится в состоянии err-disable. Вы можете проверить это с помощью команды show udld. LoopGuard и UDLD решают одну и ту же проблему: однонаправленные сбои связи. Они частично пересекаются, но есть ряд различий, вот общий обзор: LoopGuardUDLDНастройкиГлобально/на портуГлобально (для оптики)/на портуVLAN?ДаНет, на портуАвтосохранениеДаДа, но вам нужно настроить errdisable timeout.Защита от сбоев STP из-за однонаправленных связейДа - нужно включить его на всех корневых и альтернативных портахДа - нужно включить его на всех интерфейсах.Защита от сбоев STP из-за сбоев программного обеспечения (нет отправки BPDU)ДаНетЗащита от неправильного подключения (коммутационный оптический приемопередающий разъем)НетДа Есть еще одна последняя тема, которую хотелось бы объяснить, это не протокол связующего дерева, но речь идет о избыточных ссылках, поэтому я оставлю ее здесь. Это называется FlexLinks. Вот в чем дело: при настройке FlexLinks у вас будет активный и резервный интерфейс. Мы настроим это на коммутаторе C: Fa0/14 будет активным интерфейсом. Fa0/16 будет интерфейс резервного копирования (этот блокируется!). При настройке интерфейсов в качестве FlexLinks они не будут отправлять BPDU. Нет никакого способа обнаружить петли, потому что мы не запускаем на них связующее дерево. Всякий раз, когда наш активный интерфейс выходит из строя, резервный интерфейс заменяет его. SwitchC(config)#interface fa0/14 SwitchC(config-if)#switchport backup interface fa0/16 Именно так мы делаем интерфейс fa0/16 резервной копией интерфейса fa0/14. Вы можете видеть, что связующее дерево отключается для этих интерфейсов. Проверьте нашу конфигурацию с помощью команды show interfaces switchport backup. Вот и все, что нужно было сделать. Это интересное решение, потому что нам больше не нужно связующее дерево. Ведь в любой момент времени активен только один интерфейс. SwitchC(config)#interface f0/14 SwitchC(config-if)#shutdown Давайте закроем активный интерфейс. Вы можете видеть, что fa0/16 стал активным. Вот и все.
img
В этом подробном руководстве показано, как установить ffmpeg в Ubuntu и других дистрибутивах Linux. Он также демонстрирует некоторые полезные команды ffmpeg для практического использования. ffmpeg - это утилита командной строки (CLI) для обработки мультимедийных файлов. Это фреймворк с множеством функций и, благодаря лицензии с открытым исходным кодом, является основой для многих распространенных приложений, таких как VLC, YouTube, iTunes и многих других. Ряд видеоредакторов для Linux используют ffmpeg под GUI. В этом руководстве мы расскажем, как установить ffmpeg, и как использовать его базовые и продвинутые функции. Установка ffmpeg в Linux Установка ffmpeg - это простой процесс. Это популярное приложение, которое доступно в большинстве дистрибутивов Linux через менеджер пакетов. Установка ffmpeg в Ubuntu В Ubuntu ffmpeg доступен в репозитории Universe , поэтому убедитесь, что он включен. а затем обновите список пакетов и установите ffmpeg. Вы можете сделать все это, используя следующие команды в терминале: sudo add-apt-repository universe sudo apt update sudo apt install ffmpeg Готово! Чтобы проверить установку выполните: ffmpeg Вы должны увидеть вывод, описывающий вашу конфигурацию ffmpeg, включая версию. Как вы можете видеть на скриншоте выше, установлена версия 3.4.4. Однако последняя версия ffmpeg на момент написания этой статьи - 4.2. Чтобы установить любую версию 4.x, вы должны установить ffmpeg через PPA (персональный архив пакетов). Существует неофициальный PPA, который вы можете использовать для установки последней версии ffmpeg. Просто используйте эти команды: sudo add-apt-repository ppa:jonathonf/ffmpeg-4 sudo apt update sudo apt install ffmpeg -y Установка ffmpeg в дистрибутивах на основе Arch Чтобы установить ffmpeg в дистрибутивах на основе Arch, используйте следующую команду: sudo pacman -S ffmpeg Установка ffmpeg в дистрибутивах на основе Fedora Чтобы установить ffmpeg в дистрибутивы Linux на основе Fedora, вы можете использовать эту команду: sudo dnf install ffmpeg Установка ffmpeg в CentOS/RHEL FFmpeg недоступен в репозиториях CentOS 8 по умолчанию. Вы можете собрать инструменты ffmpeg из исходного кода или установить его с помощью утилиты dnf из репозитория Negativo17. Репозиторий Negativo17 зависит от репозиториев EPEL (Extra Packages for Enterprise Linux) и PowerTools. Для их включения используйте: sudo dnf install epel-release sudo yum config-manager --set-enabled PowerTools sudo yum-config-manager --add-repo=https://negativo17.org/repos/epel-multimedia.repo После включения этих репозиториев уже можно установить сам ffmpeg: sudo dnf install ffmpeg Установка ffmpeg в Debian Официальные репозитории Debian содержат пакеты FFmpeg, которые можно установить с помощью менеджера пакетов apt. sudo apt install ffmpeg Как использовать ffmpeg: Основы С установленным ffmpeg перейдем к основным командам, чтобы вы начали использовать этот мощный инструмент. Основные строительные блоки ffmpeg: ffmpeg - инструмент командной строки для конвертации мультимедийных файлов между форматами ffplay - простой медиаплеер на основе SDL и библиотек FFmpeg ffprobe - простой мультимедийный анализатор потоков ffmpeg также содержит библиотеки для разработчиков - libavutil, libavcodec, libavformat, libavdevice, libavfilter, libswscale и libswresample. Процесс транскодирования в ffmpeg для может быть описан следующей схемой: 0. Команды ffmpeg Основная форма команды ffmpeg: ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url} ... Вы должны иметь в виду, что все параметры файла применяются только к файлу, который следует за ними (и вы должны будете записать их снова для следующего файла). Любой файл, которому не предшествует -i, считается выходным файлом. ffmpeg использует столько входов и выходов, сколько вы предоставляете. Вы также можете использовать одно и то же имя как для входного, так и для выходного файла, но вам придется добавить тег -y перед именем выходного файла. Вы не должны смешивать входы и выходы: сначала укажите входные файлы, затем укажите выходные файлы. 1. Получить информацию медиа файла Первое использование ffmpeg - отображение информации о медиафайле. Это можно сделать, не вводя никаких выходных файлов. Просто введите: ffmpeg -i file_name Это работает для аудио и видео файлов: ffmpeg -i video_file.mp4 ffmpeg -i audio_file.mp3 Хотя эта команда полезна, она отображает слишком много информации, которая не относится к вашему файлу (информация о ffmpeg). Чтобы пропустить это, добавьте флаг -hide_banner: ffmpeg -i video_file.mp4 -hide_banner ffmpeg -i audio_file.mp3 -hide_banner Как вы можете видеть, команда теперь выводит только информацию, касающуюся указанного вами медиа-файла (кодировщик, потоки и так далее). 2. Конвертировать медиа файлы Еще один очень полезный способ использования ffmpeg - это беспроблемное преобразование между различными форматами мультимедиа. Вам нужно только указать входные и выходные файлы, так как ffmpeg получит требуемый формат из расширений файлов. Это работает для преобразования видео в видео и аудио в аудио. Вот некоторые примеры: ffmpeg -i video_input.mp4 video_output.avi ffmpeg -i video_input.webm video_output.flv ffmpeg -i audio_input.mp3 audio_output.ogg ffmpeg -i audio_input.wav audio_output.flac Вы даже можете указать больше выходных файлов: ffmpeg -i audio_input.wav audio_output_1.mp3 audio_output_2.ogg Это преобразует входные файлы во все указанные форматы. Чтобы увидеть список всех поддерживаемых форматов, используйте: ffmpeg -formats Опять же, вы можете добавить -hide_banner, чтобы опустить информацию о приложении. Вы можете указать параметр -qscale 0 перед выходным файлом, чтобы сохранить качество видеофайла: ffmpeg -i video_input.wav -qscale 0 video_output.mp4 Кроме того, вы можете указать кодеки, которые вы хотите использовать, добавив -c:a (для аудио) и -c:v (для видео) с последующим названием кодеков, или скопировать, если хотите использовать те же кодеки, что и оригинальный файл: ffmpeg -i video_input.mp4 -c:v copy -c:a libvorbis video_output.avi 3. Извлечение аудио из видео Чтобы извлечь аудио из видеофайла, вы делаете простое преобразование и добавляете флаг -vn: ffmpeg -i video.mp4 -vn audio.mp3 Обратите внимание, что эта команда будет использовать битрейт (скорость передачи) исходного файла. Вы можете установить его вручную, и для этого использовать -ab (audio bit rate): ffmpeg -i video.mp4 -vn -ab 128k audio.mp3 Некоторые распространенные битрейты: 96 КБ, 128 КБ, 192 КБ, 256 КБ, 320 КБ (максимальный битрейт, поддерживаемый mp3). Другими общими параметрами являются -ar (частота звука: 22050, 441000, 48000), -ac (количество аудиоканалов), -f (формат аудио, хотя обычно определяется автоматически). -ab также можно заменить на -b:a. Например: ffmpeg -i video.mov -vn -ar 44100 -ac 2 -b:a 128k -f mp3 audio.mp3 4. Отключение звука в видео Как и в последнем примере, для этого мы добавим простой тег: -an (вместо -vn). ffmpeg -i video_input.mp4 -an -video_output.mp4 Примечание: Тег -an сделает все параметры звука для этого выходного файла бесполезными, поскольку в результате операции не будет звука. 5. Извлечение изображений из видео Допустим, у вас есть серия изображений (например, слайд-шоу), и вы хотите получить все изображения из этого. Просто введите: ffmpeg -i video.mp4 -r 1 -f image2 image-%3d.png -r указывает частоту кадров (сколько кадров извлекается в изображения за одну секунду, по умолчанию: 25), -f указывает формат вывода. Последний параметр (выходной файл) имеет несколько интересное название: в конце он использует %3d. Это просто нумерует ваши изображения с 3 цифрами (000, 001 и так далее). Вы также можете использовать %2d (двухзначный формат) или даже %4d (четырехзначный формат), если хотите. 6. Изменение разрешения видео или соотношения сторон Еще одно простое задание для ffmpeg. Все, что вам нужно сделать, чтобы изменить размер видео, это указать новое разрешение после флага -s: ffmpeg -i video_input.mov -s 1024x576 video_output.mp4 Кроме того, вы можете указать -c:a, чтобы убедиться в правильности аудиокодеков выходного файла: ffmpeg -i video_input.h264 -s 640x480 -c:a video_output.mov Вы также можете изменить соотношение сторон, используя -aspect: ffmpeg -i video_input.mp4 -aspect 4:3 video_output.mp4 7. Добавить изображение обложки в аудио Это отличный способ превратить аудио в видео, используя одну фотографию (например, обложку альбома) для аудио. Это очень полезная функция, когда вы хотите загружать аудиофайлы на сайты, на которых не разрешено ничего, кроме видео и изображений (YouTube и Facebook являются примерами таких сайтов). Вот пример: ffmpeg -loop 1 -i image.jpg -i audio.wav -c:v libx264 -c:a aac -strict experimental -b:a 192k -shortest output.mp4 Просто измените кодеки (-c:v указывает видеокодеки, -c:a указывает аудиокодеки) и имена ваших файлов. Также вам не нужно использовать -strict experimental, если вы используете более новую версию (4.x). 8. Добавить субтитры к видео С ffmpeg просто добавить субтитры к видео. Введите следующее: ffmpeg -i video.mp4 -i subtitles.srt -c:v copy -c:a copy -preset veryfast -c:s mov_text -map 0 -map 1 output.mp4 Конечно, вы можете указать любые кодеки, которые вы хотите (и любые другие дополнительные параметры, связанные с аудио и видео). 9. Сжатие медиа-файлов Сжатие файлов значительно уменьшает размер файла, экономя вам много места. Это может быть важно для передачи файлов. С ffmpeg есть несколько способов уменьшить размер файла. Примечание: Слишком большое сжатие файлов заметно ухудшит качество получаемого файла. Прежде всего, для аудиофайлов просто уменьшите битрейт (используя -b:a или -ab): ffmpeg -i audio_input.mp3 -ab 128k audio_output.mp3 ffmpeg -i audio_input.mp3 -b:a 192k audio_output.mp3 Опять же, некоторые значения битрейта: 96k, 112k, 128k, 160k, 192k, 256k, 320k. Чем выше битрейт, тем выше размер файла и качество. Для видео файлов у вас есть больше вариантов. Один из способов - уменьшить битрейт видео (используя -b:v): ffmpeg -i video_input.mp4 -b:v 1000k -bufsize 1000k video_output.mp4 Вы можете установить флаг -crf (Constant Rate Factor - коэффициент постоянной скорости). Чем ниже CRF, тем выше скорость передачи данных. Также помогает использование libx264 в качестве видеокодека. Вот очень эффективное уменьшение размера с очень небольшим снижением качества: ffmpeg -i video_input.mp4 -c:v libx264 -crf 28 video_output.mp4 CRF от 20 до 30 распространен, но можно выставлять и другие значения. Снижение частоты кадров (фреймрейта) может работать в некоторых случаях (хотя это может очень легко сделать видео медленным): ffmpeg -i video_input.mp4 -r 24 video_output.mp4 -r указывает частоту кадров (в данном случае 24). Вы также можете попробовать уменьшить разрешение видео (смотри выше как это сделать). Дополнительным советом является сжатие звука, делая его стереофоническим и снижая скорость передачи данных. Например: ffmpeg -i video_input.mp4 -c:v libx264 -ac 2 -c:a aac -strict -2 -b:a 128k -crf 28 video_output.mp4 Примечание: -strict -2 и -ac 2 позаботятся о стерео части 10. Обрезать медиа файлы Чтобы обрезать файлы с самого начала, вы должны указать продолжительность, используя -t: ffmpeg -i input_video.mp4 -t 5 output_video.mp4 ffmpeg -i input_audio.wav -t 00:00:05 output_audio.wav Как видите, это работает как для видео, так и для аудио файлов. Обе команды выше делают одно и то же: сохраняют первые 5 секунд входного файла в выходной файл. Можно использовать различные способы ввода длительности, как видно в примере - одно число (количество секунд) и ЧЧ:ММ:СС (часы, минуты, секунды). Вы можете пойти еще дальше, указав время начала с -ss и даже время окончания с -to: ffmpeg -i input_audio.mp3 -ss 00:01:14 output_audio.mp3 ffmpeg -i input_audio.wav -ss 00:00:30 -t 10 output_audio.wav ffmpeg -i input_video.h264 -ss 00:01:30 -to 00:01:40 output_video.h264 ffmpeg -i input_audio.ogg -ss 5 output_audio.ogg Вы можете тут видеть время начала -ss (ЧЧ:ММ:СС), длительность -t в секундах, время окончания -to (ЧЧ:ММ:СС) и время начала -s (начать после указанного времени в секундах). Как использовать ffmpeg: Расширенное использование Теперь мы расскажем о чуть более продвинутых функциях, таких как запись экрана, использование устройств и другие. 1. Обрезка медиа-файлов Чтобы разделить файл на несколько частей, нужно указать несколько разделений (указать время начала, время окончания или продолжительность перед каждым выходным файлом). Посмотрите на этот пример: ffmpeg -i video.mp4 -t 00:00:30 video_1.mp4 -ss 00:00:30 video_2.mp4 Синтаксис довольно прост. Мы указали -t 00:00:30 как продолжительность для первой части (первая часть будет состоять из первых 30 секунд исходного видео). Далее мы указали, что мы хотели бы, чтобы остальные были частью второго видео (начиная с конца последней части, 00:00:30). Это можно сделать для любого количества частей. Имейте в виду, что это работает со звуком тоже. 2. Склейка медиа-файлов ffmpeg также может выполнить противоположный процесс: собрать несколько частей вместе. Для этого вам нужно будет создать новый текстовый файл и начать редактировать его, используя предпочитаемый вами редактор. В примере мы будем использовать touch и >vim. Неважно, как вы называете этот файл. Например, назовем его join.txt и создадим, используя touch: touch videos_to_join.txt Теперь отредактируем его в vim vim videos_to_join.txt Здесь введите полные пути ко всем файлам, которые вы хотите присоединить (они будут объединены в том порядке, в котором вы их здесь пишете), по одному на строку. Убедитесь, что они имеют одинаковое расширение (например, mp4). Вот пример: /home/ubuntu/Desktop/video_1.mp4 /home/ubuntu/Desktop/video_2.mp4 /home/ubuntu/Desktop/video_3.mp4 Сохраните файл, который вы только что отредактировали. Этот метод работает для любых аудио или видео файлов. Теперь введите следующее: ffmpeg -f concat -i join.txt output.mp4 Примечание: наш выходной файл - output.mp4, потому что все наши входные файлы имеют расширение mp4. Это должно объединить все файлы, которые мы записали в join.txt, в один выходной файл. 3. Соедините изображения в видео Таким образом вы можете создать слайдшоу или что-то подобное. Первое, что мы рекомендуем сделать, это убедиться, что фотографии, которые вы хотите собрать, находятся в одном каталоге. Мы поместим наши в папку my_photos. Для картинок рекомендуются расширения .png и .jpg. Какой бы вариант вы ни выбрали, убедитесь, что все изображения имеют одинаковое расширение. Формат -f нашего преобразования должен быть image2pipe. Для ввода необходимо указать дефис -. image2pipe позволяет вам пайпировать (pipe), используя |, результаты команды, такой как cat, в ffmpeg вместо того, чтобы вводить все имена одно за другим. Чтобы это работало, мы также должны упомянуть, что мы хотим, чтобы видеокодеки были скопированы -c:v copy (чтобы правильно использовать изображения): cat my_photos/* | ffmpeg -f image2pipe -i - -c:v copy video.mkv Если вы воспроизводите этот файл, вы можете подумать, что в слайд-шоу были добавлены только некоторые изображения. На самом деле все ваши фотографии были добавлены, но ffmpeg проходит по ним их как можно быстрее. Это означает 1 кадр на фотографию, ffmpeg по умолчанию работает со скоростью около 23 кадров в секунду. Чтобы изменить это, вам нужно указать желаемую частоту кадров -framerate: cat my_photos/* | ffmpeg -framerate 1 -f image2pipe -i - -c:v copy video.mkv В нашем примере мы устанавливаем частоту кадров равную 1, что означает, что каждый кадр (что также означает каждое изображение) появляется в течение 1 секунды. Чтобы добавить аудио, например, фоновую песню, нам нужно указать аудиофайл в качестве входного файла -i audo_file и скопировать аудиокодеки -c: copy. Для кодеков вы можете копировать аудио и видео кодеки одновременно с -c copy. Убедитесь, что вы установили кодеки прямо перед указанием выходного файла. Вы также можете установить частоту кадров, чтобы все ваши изображения синхронизировались с продолжительностью звука, который вы хотите использовать. Чтобы сделать это, разделите количество изображений на продолжительность аудио (в секундах). Для нашего примера у нас есть аудиофайл длиной 22 секунды и 9 изображений. 9 разделить на 22 составляет приблизительно 0,40, поэтому мы будем использовать это для нашей частоты кадров: cat my_photos/* | ffmpeg -framerate 0.40 -f image2pipe -i - -i audio.wav -c copy video.mkv 4. Запись экрана Тут нужно использовать формат -f x11grab. Это запишет ваш XSERVER. В качестве входных данных вы должны будете указать номер вашего экрана (основной экран обычно должен быть 0:0). Но это будет захватывать только верхнюю левую часть экрана. Вы должны добавить размер экрана (или экранов). Наш размер - 1920?1080. Размер экрана должен быть указан перед вводом: ffmpeg -f x11grab -s 1920x1080 -i :0.0 output.mp4 Нажмите q или CTRL + C в любое время, чтобы остановить запись. Вы можете сделать размер выходного файла полноэкранным, введя следующее для размера (вместо 1920?1080 или любого другого установленного разрешения): -s $(xdpyinfo | grep dimensions | awk '{print $2;}') Полная команда: ffmpeg -f x11grab -s $(xdpyinfo | grep dimensions | awk '{print $2;}') -i :0.0 output.mp4 5. Запишите свою веб-камеру Запись ввода с вашей веб-камеры (или другого устройства, такого как USB-камера) еще проще. В Linux устройства хранятся в /dev как /dev/video0, /dev/video1 и так далее: ffmpeg -i /dev/video0 output.mkv И также нажмите q или CTRL + C, чтобы остановить запись. 6. Запишите ваше аудио Linux обрабатывает аудио в основном через ALSA и pulseaudio. ffmpeg может записывать оба, но мы рассмотрим pulseaudio, так как дистрибутивы на основе Debian включают его по умолчанию. Синтаксис немного отличается для двух методов. Для pulseaudio, вы должны использовать force -f alsa и указать устройство ввода по умолчанию как input -i default: ffmpeg -f alsa -i default output.mp3 В настройках звука у дистрибутива убедитесь, что записывающим устройством по умолчанию является то устройство, которое вы хотите записать. Конечно, для любого типа записи вы также можете указать кодеки. Вы можете выбрать конкретную частоту кадров -r. Вы также можете совмещать запись звука с записью с веб-камеры/экрана. ffmpeg -i /dev/video0 -f alsa -i default -c:v libx264 -c:a flac -r 30 output.mkv Вместо записи звука вы можете так же легко добавить аудиофайл в качестве звука поверх для записи экрана или веб-камеры: ffmpeg -f x11grab -s $(xdpyinfo | grep dimensions | awk '{print $2;}') -i :0.0 -i audio.wav -c:a copy output.mp4 Записи в ffmpeg мелкими, поэтому очень маленькая запись может не сохраниться. Мы рекомендуем сделать запись немного дольше и затем обрезать ее (если вам нужно всего несколько секунд), просто чтобы убедиться, что файл действительно будет записан на ваш диск. Основное использование фильтров в ffmpeg Фильтры являются невероятно мощной функцией ffmpeg. Вам доступно огромное количество фильтров, что делает ffmpeg полностью способным обрабатывать любые потребности редактирования. Основная структура для использования фильтра: ffmpeg -i input.mp4 -vf "filter=setting_1=value_1:setting_2=value_2" output.mp4 ffmpeg -i input.wav -af "filter=setting_1=value_1:setting_2=value_2" output.wav Как вы можете видеть, мы указываем видео фильтры -vf, (сокращенно от -filter:v) и аудио фильтры -af, (сокращенно от -filter:a). Фактические фильтры пишутся в двойных кавычках " и могут быть объединены в цепочку через запятую ,. Вы можете указать столько фильтров, сколько хотите. Общая форма фильтра: filter=setting_2=value_2:setting_2=value_2 Различные настройки фильтра и их значения разделены двоеточиями. Вы также можете выполнять математические операции в качестве значений для различных настроек. Более подробное описание различных констант, используемых в выражениях, и различных настроек можно найти в официальной документации фильтра ffmpeg. 1. Масштабирование видео Это очень простой фильтр. Единственными настройками являются ширина w и высота h: ffmpeg -i input.mp4 -vf "scale=w=800:h=600" output.mp4 Как мы уже упоминали, вы можете использовать математические операции для значений: ffmpeg -i input.mkv -vf "scale=w=1/2*in_w:h=1/2*in_h" output.mkv Эта команда устанавливает размер вывода равным половине (1/2) от размера ввода in_w, in_h. 2. Обрезка видео Что касается фильтра масштабирования, настройки - это ширина и высота результирующего файла. При желании вы можете указать координаты для верхнего левого угла разреза (по умолчанию: центр входного видео): ffmpeg -i input.mp4 -vf "crop=w=1280:h=720:x=0:y=0" output.mp4 ffmpeg -i input.mkv -vf "crop=w=400:h=400" output.mkv Как уже отмечалось, вторая обрезка будет вырезать в центре входного файла (так как мы не указали координаты x и y для верхнего левого угла). Первая команда будет вырезать из левого верхнего угла x=0:y=0. Вот пример, который использует математические выражения в качестве значений: ffmpeg -i input.mkv -vf "crop=w=3/4*in_w:h=3/4*in_h" output.mkv Эта команда устанавливает размер вывода на 3/4 от размера ввода (in_w, in_h). 3. Поворот видео Вы также можете повернуть видео по часовой стрелке на определенную величину в радианах. Чтобы упростить задачу, вы можете указать значение в градусах и преобразовать его в радианы, умножив это значение на PI/180: ffmpeg -i input.avi -vf "rotate=90*PI/180" ffmpeg -i input.mp4 -vf "rotate=PI" Первая команда повернет видео по часовой стрелке на 90 градусов. Вторая команда перевернет видео вверх ногами (PI рад = 180 градусов). 4. Преобразование аудиоканала Это может быть полезно, если вы каким-то образом получаете звук только в правом ухе или что-то подобное. Вы можете сделать звук слышимым из обоих ушей (в данном конкретном случае) следующим образом: ffmpeg -i input.mp3 -af "channelmap=1-0|1-1" output.mp3 Это мапит правый 1 аудиоканал на левый 0 и правый 1 аудиоканалы (левое число представляет собой вход, правое число представляет собой выход). 5. Увеличение громкости звука Вы можете умножить громкость звука на любое действительное число. Вам нужно только указать множитель: ffmpeg -i input.wav -af "volume=1.5" output.wav ffmpeg -i input.ogg -af "volume=0.75" output.ogg Первая команда увеличивает громкость в 1,5 раза. Вторая команда делает звук в 1/4 (0,25) раза тише. 6. Настройка скорости воспроизведения Фильтр для видео - setpts (PTS = presentation time stamp). Поскольку мы на самом деле модифицируем PTS, больший коэффициент означает более медленный результат, и наоборот: ffmpeg -i input.mkv -vf "setpts=0.5*PTS" output.mkv ffmpeg -i input.mp4 -vf "setpts=2*PTS" output,mp4 Первая команда удваивает скорость воспроизведения, а вторая команда замедляет видео до 1/2 скорости. Фильтр для аудио - atempo. Есть одно маленькое предостережение: оно может принимать значения только от 0,5 (половина скорости) до 2 (удвоение скорости). Чтобы обойти это, вы можете использовать их один за другим: ffmpeg -i input.wav -af "atempo=0.75" output.wav ffmpeg -i input.mp3 -af "atempo=2.0,atempo=2.0" ouutput.mp3 Первая команда замедляет звук на 1/4 от первоначальной скорости. Вторая команда ускоряет звук в 4 раза (2*2) Чтобы изменить скорость воспроизведения видео и аудио с помощью одной и той же команды, вам нужно использовать filtergraphs 7. Добавить водяной знак Для размещения водяного знака используем фильтр overlay, вместе с координатами его расположения на видео. Например, вотермарк размером 100*100 мы хотим расположить в центре видео с размерами 1280?720. Получим по горизонтали x = (1280 - 100) / 2 = 590 и по вертикали y = (720 - 100) / 2 = 310. Поэтому значение будет overlay=590:310. Но удобнее использовать формулу overlay=(main_w-overlay_w)/2:(main_h-overlay_h)/2, где main_w и main_h - высота и ширина видео, а overlay_w и overlay_h - водяного знака. Получим команду: ffmpeg -i source_video.mp4 -i watermark.png -filter_complex "overlay=(main_w-overlay_w)/2:(main_h-overlay_h)/2" -codec:a copy video_protected.mp4 Завершение В этом руководстве мы рассмотрели установку, базовое использование, расширенное использование и основы фильтров ffmpeg. Мы надеемся, что это может быть полезно для всех, кто хочет попробовать ffmpeg, для кого-то, кто хочет использовать ffmpeg для нескольких задач, или даже просто для того, кто хочет больше узнать о широких возможностях этой удивительной утилиты.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59