По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье мы рассмотрим работу такого функционала Elastix 4 как Agenda, и его сопутствующего модуля – Calendar. Обзор Данный функционал находится в общем меню слева, и называется, как я уже упоминал выше – Agenda: Если кликнуть по нему, то откроется два модуля на выбор Calendar и Address Book: Начнем с обзора возможностей Calendar. Настройка и использование Calendar Как видно на скриншоте ниже, это обычный календарь, но с не совсем обычным функционалом. После нажатия на кнопку + Create New Event, откроется следующее окно, которое можно увидеть на скриншоте ниже, вместе с примером настройки. По факту, это будет автоматический звонок указанному абоненту с подключением механизма TTS (Text to Speech) – то есть озвучивания текста голосом: Name - Название события Description - Описание события, необязательное поле Start and End dates - Дата начала и дата конца события Color - Цвет, которым событие будет выделено в календаре Configure a phone call reminder - включение возможности голосового напоминания участнику события Call to - номер телефонаэкстеншена Reminder - параметр, определяющий, за какое время будет произведено голосовое напоминание Text to Speech - текст, который будет произнесен с помощью TTS абоненту Кроме того можно прислать напоминание участниками по email: Для завершения настройки необходимо кликнуть кнопку Save. После этого событие появится в вашем календаре и будет выделено указанным цветом. Заключение В заключение хочу сказать что скорее всего данный функционал будет не очень часто использоваться, по причине повсеместного развития облачных календарей и различных to-do приложений, но если при каком-то сценарии вам понадобится данный календарь – знайте, он есть :)
img
Управление компьютерными сетями - дело непростое. В последние годы всеобщая компьютеризация вызвала огромный скачок в расширении компьютерных сетей. Это добавило работы системному администратору. Ведь если ранее были распространены небольшие сети, то добавление и настройка новых устройств, либо обновление ПО на уже находящихся требовали ручной настройки операционной системы, а то и установки на каждом из них. Это требовало времени и нервов администратора. Сейчас же, когда сети насчитывают сотни, а то и тысячи машин, ручная настройка требует либо участия многих специалистов (а это порождает проблему плохой совместимости согласно человеческому фактору, каждый админ мыслит по-своему), либо очень долгого времени, если этим будет заниматься один специалист. Такая проблема, с учетом технического прогресса, породила решение об автоматизации. На сегодняшний день существует специализированное программное обеспечение, которое позволяет присоединиться к удаленным машинам, и в автоматическом режиме произвести настройки операционной системы для корректной работы сети. Однако, как быть, если на нужных компьютерах в рамках одной сети установлены разные операционные системы? Ведь сейчас компьютеры под Linux, FreeBSD и Windows, объединенные в одну сеть - далеко не редкость. Поэтому одним из требований к управляющей программе стала кроссплатформенность. В этом случае одним из самых эффективных решений является такая программа, как Puppet. Puppet это один из самых нужных инструментов сетевого администратора. Это приложение создано специально для управления конфигурацией операционных систем внутри одной сети. Оно имеет клиент-серверную архитектуру, то есть администратор, находящийся за сервером, может отправлять данные конфигурации на периферийные машины, на которых установлена клиентская часть. На этих рабочих станциях система в автоматическом режиме сконфигурирует себя в соответствии с присланными с сервера настройками. Важным моментом является кроссплатформенность. Простота настройки и управления самыми распространенными операционными системами делает Puppet одним из самых актуальных решений по управлению компьютерными сетями на сегодняшний день. Как же работает Puppet? Разберем подробнее. Для начала, на сервер нужно установить серверную часть программы. Поскольку приложение написано на Ruby, на серверной рабочей станции обязательно должна быть установлена нужная программная среда. Серверная часть программы создана для хранения манифестов так в программной терминологии Puppet называются файлы с настройками конфигурации. В процессе работы сервер принимает обращения с клиентских машин и автоматически отсылает им обновленные файлы конфигурирования ОС для работы в сети. На клиентских компьютерах также должно быть установлено программное обеспечение Puppet, уже в виде клиентской части. Как правило, данные установочные пакеты включаются в саму операционную систему, что позволяет быстро развертывать компьютерную сеть, однако, в случае их отсутствия, придется скачивать необходимую сборку с сайта разработчика. Дополнительное удобство данного решения в том, что один администратор с помощью сервера может осуществить настройку и управление сотен и тысяч машин, объединенных в сеть. Если возникнут какие-то проблемы, то отклик с мест позволит админу быстро поправить код и устранить их. Хотя в данном случае возрастают требования к внимательности админа - одна неверно написанная строка кода конфигурации может привести к неполадкам по всей сети. Хотя, если разобраться, в данном случае можно запустить работающий манифест предыдущей сборки и восстановить все достаточно оперативно.
img
В сегодняшней статье покажем пример настройки DMVPN – Dynamic Multipoint VPN, что является VPN решением компании Cisco. Данное решение используется, когда требуется высокая масштабируемость и легкость настройки при подключении филиалов к головному офису. DMPVN одно из самых масштабируемых и эффективных решений VPN поддерживаемых компанией Cisco. В основном оно используется при топологии Hub-and-Spoke, где вы хотели бы видеть прямые VPN туннели Spoke-to-Spoke в дополнение к обычным Spoke-to-Hub туннелям. Это означает, что филиалы смогут общаться с друг другом напрямую, без необходимости прохождение трафика через HQ. Как уже упоминали, эта технология является проприетарной технологией Cisco. Если вам необходимо подключить более десяти сайтов к головному офису, то DMPVN будет идеальным выбором. Кроме того, DMPVN поддерживает не только Hub-and-Spoke, но и Full-Mesh топологию, так как все сайты имеют между собой связность без необходимости настройки статических VPN туннелей между сайтами. Некоторые характеристики DMVPN Для начала перечислим важные характеристики данного способа организации Site-to-Site VPN для лучшего понимания: Центральный маршрутизатор (HUB) - данный роутер работает как DMVPN сервер, и Spoke маршрутизаторы работают как DMVPN клиенты; У данного маршрутизатора есть публичный статический IP-адрес на WAN интерфейсе; У Spoke маршрутизаторов на WAN интерфейсах может как статический, так и динамический публичный IP-адрес; У каждого филиала (Spoke) есть IPSEC туннель к головному офису (Hub); Spoke-to-Spoke - туннели устанавливаются при возникновении необходимости, когда есть движение трафика между филиалами. Таким образом, трафик может не ходить через головной офис, а использовать прямые туннели между филиалами; Все туннели используют Multipoint GRE c IPSEC; NHRP (Next Hop Resolution Protocol) - данный протокол используется для установления соответствий между приватными IP туннельных интерфейсов с публичными WAN адресами Описанные выше NHRP соответствия будут храниться на NHRP сервере, чем в нашем случае является HUB роутер. Каждый филиал устанавливает соединение с головным офисом и регистрирует свой публичный IP-адрес и его приватный IP-адрес тунеля; Когда филиалу необходимо отправить пакеты в подсеть другого филиала, он запрашивает NHRP сервер для получения информации о внешнем публичном адресе целевого филиала; Для лучшей масштабируемости советуем использовать один из протоколов динамический маршрутизации между всеми роутерами – например, EIGRP; Еще раз кратко о технологиях, которые использует DMVPN: Multipoint GRE; IPSEC; NHRP – Next Hop Resolution Protocol; Статическая или динамическая маршрутизация; Настройка маршрутизатора Конкретно в нашем примере у нас будет HUB маршрутизатор и два филиала. И, как было описано ранее, HUB – это DMVPN cервер, а филиалы – DMPVN клиенты. В нашем примере в качестве маршрутизатора используется CISCO1921/K9 Сначала настраиваем HUB маршрутизатор – ему необходимо присвоить статический IP – адрес на внешнем WAN-интерфейсе: ! Настраиваем интерфейсы interface GigabitEthernet0/0 description to Internet-WAN ip address 10.10.10.1 255.255.255.252 ! interface GigabitEthernet0/1 description to LAN ip address 192.168.160.1 255.255.255.0 duplex auto ! Настраиваем туннельный интерфейс, который является улучшенным GRE (Multipoint GRE) interface Tunnel1 description DMVPN Tunnel ip address 172.16.1.1 255.255.255.0 // выбираем приватную подсеть для туннелей no ip redirects ip nhrp authentication nhrp1234 // аутентификация между маршрутизаторами ip nhrp network-id 1 // сетевой идентификатор, который должен быть одинаковым на всех маршрутизаторах load-interval 30 keepalive 5 10 tunnel source GigabitEthernet0/0 // назначаем источником туннеля WAN интерфейс tunnel mode gre multipoint // определяем туннель как mGRE tunnel protection ipsec profile protect-gre // шифруем трафик в туннеле с помощью IPSEC ip mtu 1440 // уменьшаем MTU для того, чтобы разрешить оверхед на mGRE и IPSEC ip nhrp map multicast dynamic // разрешаем форвардить мультикаст трафик между туннелями. ! Настраиваем IPSEC на главном роутере crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 // принимать соединения от любого источника при наличии динамических филиалов ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! ! crypto ipsec profile protect-gre // профиль добавленный к mGRE туннелю для шифрования set security-association lifetime seconds 86400 set transform-set TS ! Настраиваем статическую маршрутизацию на HUB маршрутизаторе ip route 192.168.164.0 255.255.255.0 172.16.1.2 // удаленные подсети доступны через IP удаленного туннеля ip route 192.168.161.0 255.255.255.0 172.16.1.3 // удаленные подсети доступны через IP удаленного туннеля Затем настраиваем маршрутизаторы в филиалах (Spoke роутеры) - у одного маршрутизатора статический айпишник на WAN интерфейсе, и у другого динамический, получаемый по DHCP. Первый маршрутизатор в филиале, с динамическим IP: interface GigabitEthernet0/0 description WAN to Internet ip address dhcp duplex auto speed auto interface GigabitEthernet0/1 description To LAN ip address 192.168.164.1 255.255.255.0 duplex auto speed auto interface Tunnel1 ip address 172.16.1.2 255.255.255.0 // помещаем в ту же подсеть что и другие туннели no ip redirects ip nhrp map multicast dynamic // разрешаем форвардить мультикаст трафик между туннелями tunnel source GigabitEthernet0/0 // “source”- WAN интерфейс tunnel mode gre multipoint tunnel protection ipsec profile protect-gre ip nhrp authentication nhrp1234 ip nhrp map 172.16.1.1 10.10.10.1 // соответствие HUB адреса туннеля с HUB адресом WAN ip nhrp network-id 1 ip nhrp nhs 172.16.1.1 // настройка NHRP ip nhrp registration no-unique // если NHRP процесс завершился (поиск соответствия) для определенного IP, то больше данный процесс не запустится ip nhrp map multicast 10.10.10.1 // Отправка milticast трафика только в Hub. Головной маршрутизатор будет получать весь мультикаст трафик (например, обновления протокола маршрутизации) и отправлять его всем Spoke маршрутизаторам ip mtu 1440 load-interval 30 keepalive 5 10 crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 // Филиалы должны разрешать подклюения с любого адреса для формирования IPSEC VPN туннелей с другими филиалами ! ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! crypto ipsec profile protect-gre set security-association lifetime seconds 86400 set transform-set TS ip route 192.168.160.0 255.255.255.0 172.16.1.1 // Маршрут для HUB ip route 192.168.161.0 255.255.255.0 172.16.1.3 // Маршрут для другого филиала Spoke site Второй филиальный маршрутизатор, со статическим IP: interface GigabitEthernet0/0 description TO Internet ip address 10.10.10.9 255.255.255.252 duplex auto speed auto interface GigabitEthernet0/1 description To: LAN ip address 192.168.161.1 255.255.255.0 duplex auto speed auto interface Tunnel1 ip address 172.16.1.3 255.255.255.0 // должен быть в той же подсети что и другие туннели no ip redirects ip nhrp map multicast dynamic // разрешаем форвард мульткастов между туннелями. tunnel source GigabitEthernet0/0 tunnel mode gre multipoint tunnel protection ipsec profile protect-gre ip nhrp authentication nhrp1234 ip nhrp map 172.16.1.1 10.10.10.1 // мапируем адрес HUB тунеля к WAN адресу ip nhrp network-id 1 ip nhrp nhs 172.16.1.1 // настраиваем NHRP клиент с указанием адреса сервера ip nhrp registration no-unique ip nhrp map multicast 10.10.10.1 ip mtu 1440 load-interval 30 keepalive 5 10 crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! !crypto ipsec profile protect-gre set security-association lifetime seconds 86400 set transform-set TS ip route 192.168.160.0 255.255.255.0 172.16.1.1 // маршрут до головного маршрутизатор ip route 192.168.164.0 255.255.255.0 172.16.1.2 // маршрут до другого филиала Переходим к тестированию: show dmvpn // проверяем статус DMVPN и NHRP show crypto isakmp sa // проверяем IPSEC cвязность между маршрутизаторами ping 192.168.164.1 // пингуем для проверки ping 192.168.1.1 В нашем примере использовалась статическая маршрутизация, но при большом количестве филиалов необходимо использовать протоколы динамический маршрутизации для уменьшения ручного труда и риска ошибки.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59