По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Существует новая тенденция для стандартов проектирования топологии сети - создание быстрой, предсказуемой, масштабируемой и эффективной коммуникационной архитектуры в среде центра обработки данных. Речь идет о топологии Leaf-Spine, о которой мы поговорим в этой статье. Почему Leaf-Spine? Учитывая повышенный фокус на массовые передачи данных и мгновенные перемещения данных в сети, стареющие трехуровневые конструкции в центрах обработки данных заменяются так называемым дизайном Leaf-Spine. Архитектура Leaf-Spine адаптируется к постоянно меняющимся потребностям компаний в отраслях big data с развивающимися центрами обработки данных. Другая модель Традиционная трехуровневая модель была разработана для использования в общих сетях. Архитектура состоит из Core маршрутизаторов, Aggregation маршрутизаторов (иногда этот уровень называется Distribution) и Access коммутаторов. Эти устройства взаимосвязаны путями для резервирования, которые могут создавать петли в сети. Частью дизайна является протокол Spanning Tree (STP) , предотвращающий петли, однако в этом случае деактивируется все, кроме основного маршрута и резервный путь используется только тогда, когда основной маршрут испытывает перебои в работе. Введение новой модели С конфигурацией Leaf-Spine все устройства имеют точно такое же количество сегментов и имеют предсказуемую и согласованную задержку информации. Это возможно из-за новой конструкции топологии, которая имеет только два слоя: слой «Leaf» и «Spine». Слой Leaf состоит из access коммутаторов, которые подключаются к таким устройствам как сервера, фаерволы, балансировщики нагрузки и пограничные маршрутизаторы. Уровень Spine, который состоит из коммутаторов, выполняющих маршрутизацию, является основой сети, где каждый коммутатор Leaf взаимосвязан с каждым коммутатором Spine. Чтобы обеспечить предсказуемое расстояние между устройствами в этом двухуровневом дизайне, динамическая маршрутизация уровня 3 используется для соединения уровней. Она позволяет определить наилучший маршрут и настроить его с учетом изменения сети. Этот тип сети предназначен для архитектур центров обработки данных, ориентированных на сетевой трафик типа «Восток-Запад» (East-West). Такой трафик содержит данные, предназначенные для перемещения внутри самого центра обработки данных, а не наружу в другую сеть. Этот новый подход является решением внутренних ограничений Spanning Tree с возможностью использования других сетевых протоколов и методологий для достижения динамической сети. Преимущества Leaf-Spine В Leaf-Spine сеть использует маршрутизацию 3го уровня. Все маршруты сконфигурированы в активном состоянии с использованием протокола равноудаленных маршрутов Equal-Cost Multipathing (ECMP) . Это позволяет использовать все соединения одновременно, сохраняя при этом стабильность и избегая циклов в сети. При использовании традиционных протоколов коммутации уровня 2, таких как Spanning Tree в трехуровневых сетях, он должен быть настроен на всех устройствах правильно, и все допущения, которые использует протокол Spanning Tree Protocol (STP), должны быть приняты во внимание (одна из простых ошибок, когда конфигурация STP связана с неправильным назначением приоритетов устройства, что может привести к неэффективной настройке пути). Удаление STP между уровнями Access и Aggregation приводит к гораздо более стабильной среде. Другим преимуществом является простота добавления дополнительного оборудования и емкости. Когда происходит ситуация перегрузки линков, которая называется oversubscription (что означает, что генерируется больше трафика, чем может быть агрегировано на активный линк за один раз) возможность расширять пропускную способность проста - может быть добавлен дополнительный Spine коммутатор и входящие линии могут быть расширены на каждый Leaf коммутатор, что приведет к добавлению полосы пропускания между уровнями и уменьшению перегрузки. Когда емкость порта устройства становится проблемой, можно добавить новый Leaf коммутатор. Простота расширения оптимизирует процесс ИТ-отдела по масштабированию сети без изменения или прерывания работы протоколов коммутации уровня 2. Недостатки Leaf-Spine Однако этот подход имеет свои недостатки. Самый заметный из них – увеличение количества проводов в этой схеме, из-за соединения каждого Leaf и Spine устройства. А при увеличении новых коммутаторов на обоих уровнях эта проблема будет расти. Из-за этого нужно тщательно планировать физическое расположение устройств. Другим основным недостатком является использование маршрутизации уровня 3.Ее использование не дает возможность развертывать VLAN’ы в сети. В сети Leaf-Spine они локализованы на каждом коммутаторе отдельно – VLAN на Leaf сегменте недоступен другим Leaf устройствам. Это может создать проблемы мобильности гостевой виртуальной машины в центре обработки данных. Применение Leaf-Spine Веб-приложения со статичным расположением сервера получат преимущество от реализации Leaf-Spine. Использование маршрутизации уровня 3 между уровнями архитектуры не препятствует приложениям веб-масштаба, поскольку они не требуют мобильности сервера. Удаление протокола Spanning Tree Protocol приводит к более стабильной и надежной работе сети потоков трафика East-West. Также улучшена масштабируемость архитектуры. Корпоративные приложения, использующие мобильные виртуальные машины (например, vMotion), создают проблему, когда сервер нуждается в обслуживании внутри центра обработки данных, из-за маршрутизации уровня 3 и отсутствие VLAN. Чтобы обойти эту проблему, можно использовать такое решение, как Software Defined Networking (SDN) , которое создает виртуальный уровень 2 поверх сети Leaf-Spine. Это позволяет серверам беспрепятственно перемещаться внутри центра обработки данных. Другие решения В качестве альтернативы маршрутизации уровня 3 топология Leaf-and-Spine может использовать другие протоколы, такие как Transparent Interconnection of Lots of Links (TRILL) или Shortest Path Bridging (SPB) для достижения аналогичной функциональности. Это достигается за счет сокращения использования Spanning Tree и включения ECMP уровня 2, а также поддержки развертывания VLAN между Leaf коммутаторами. Итог Сети Leaf-Spine предлагают множество уникальных преимуществ по сравнению с традиционной трехуровневой моделью. Использование маршрутизации 3-го уровня с использованием ECMP улучшает общую доступную пропускную способность, используя все доступные линии. Благодаря легко адаптируемым конфигурациям и дизайну, Leaf-Spine улучшает управление масштабируемостью и контролем над перегрузкой линий. Устранение протокола Spanning Tree Protocol приводит к значительному повышению стабильности сети. Используя новые инструменты и имея способность преодолевать присущие ограничения другими решениям, такими как SDN, среды Leaf-Spine позволяют ИТ-отделам и центрам обработки данных процветать при удовлетворении всех потребностей и потребностей бизнеса.
img
Ядро - это центральный компонент операционной системы. Ядро также считается сердцем операционной системы. Он отвечает за управление всеми процессами, памятью, файлами и т. д. Ядро функционирует на самом низком уровне операционной системы. Он действует как интерфейс (мост) между пользовательским приложением (программным обеспечением) и аппаратным обеспечением. Поэтому связь между программным обеспечением и аппаратным обеспечением осуществляется через ядро. Основные функции, которые выполняет ядро: управление процессами управление памятью управление устройством обработка прерываний операции ввода/вывода Теперь давайте разберемся подробнее в этих функциях ядра... Функции ядра в операционной системе Управление процессами Создание, выполнение и завершение процессов выполняются внутри системы всякий раз, когда система находится во включенном состоянии (режиме ON). Процесс содержит всю информацию о задаче, которую необходимо выполнить. Таким образом, для выполнения любой задачи внутри системы создается процесс. В то же время существует множество процессов, которые находятся в активном состоянии внутри системы. Управление всеми этими процессами очень важно для предупреждения тупиковых ситуаций и для правильного функционирования системы, и оно осуществляется ядром. Управление памятью Всякий раз, когда процесс создается и выполняется, он занимает память, и когда он завершается, память должна быть освобождена и может быть использована снова. Но память должна быть обработана кем-то, чтобы освобожденная память могла быть снова назначена новым процессам. Эта задача также выполняется ядром. Ядро отслеживает, какая часть памяти в данный момент выделена и какая часть доступна для выделения другим процессам. Управление устройствами Ядро также управляет всеми различными устройствами, подключенными к системе, такими как устройства ввода и вывода и т. д. Обработка прерываний При выполнении процессов возникают условия, при которых сначала необходимо решить задачи с большим приоритетом. В этих случаях ядро должно прерывать выполнение текущего процесса и обрабатывать задачи с большим приоритетом, которые были получены в промежутке. Операции ввода/вывода Поскольку ядро управляет всеми подключенными к нему устройствами, оно также отвечает за обработку всех видов входных и выходных данных, которыми обмениваются эти устройства. Таким образом, вся информация, которую система получает от пользователя, и все выходные данные, которые пользователь получает через различные приложения, обрабатываются ядром. Типы ядер в операционной системе Как выше было сказано ядро - это программа, которая является основным компонентом операционной системы. Теперь давайте рассмотрим типы ядер. Ядро подразделяется на два основных типа: монолитное ядро Микро-Ядра Существует еще один тип ядра, который является комбинацией этих двух типов ядер и известен как гибридное ядро. Рассмотрим каждый из них вкратце... Монолитное Ядро В этом типе архитектуры ядра все функции, такие как управление процессами, управление памятью, обработка прерываний и т. д. выполняются в пространстве ядра.Монолитные ядра сначала состояли только из одного модуля, и этот модуль отвечал за все функции, которые выполнялись ядром. Это увеличило производительность ОС, так как все функции присутствовали внутри одного модуля, но это также привело к серьезным недостаткам, таким как большой размер ядра, очень низкая надежность, потому что даже если одна функция ядра отказала, это привело к отказу всей программы ядра и плохому обслуживанию, по той же причине. Таким образом, для повышения производительности системы был применен модульный подход в монолитных ядрах, в которых каждая функция присутствовала в отдельном модуле внутри пространства ядра. Таким образом, для исправления любых ошибок или в случае сбоя, только этот конкретный модуль был выгружен и загружен после исправления. Микроядра В этом типе архитектуры ядра основные пользовательские службы, такие как управление драйверами устройств, управление стеком протоколов, управление файловой системой и управление графикой, присутствуют в пространстве пользователя, а остальные функции управление памятью, управление процессами присутствует внутри пространства ядра. Таким образом, всякий раз, когда система имеет потребность в услугах, присутствующих в пространстве ядра, ОС переключается в режим ядра, а для служб пользовательского уровня она переключается в режим пользователя. Этот тип архитектуры ядра уменьшает размер ядра, но скорость выполнения процессов и предоставления других услуг значительно ниже, чем у монолитных ядер. Гибридное Ядро Для наилучшей производительности системы нам требуется как высокая скорость, так и малый размер ядра, чтобы наша система могла иметь максимальную эффективность. Поэтому для решения этой задачи был разработан новый тип ядра, который представлял собой комбинацию монолитного ядра и микроядра. Этот тип ядра известен как гибридное ядро. Такой тип архитектуры используется практически во всех системах, которые производятся в настоящее время.
img
Всем привет! В этой статье мы расскажем о том, как можно настроить BLF Speed Dial в Cisco Unified Communications Manager (CUCM) . BLF (Busy Lamp Field) – это фича, которая позволяет в реальном времени наблюдать статус другого абонента при помощи индикации на кнопках. Если кнопка быстрого набора горит красным, то это значит, что абонент занят (состояние Off-Hook), а если не горит, то значит что абоненту можно позвонить (состояние On-Hook). В CUCM для этого используется инструмент Native Presence. Настройка BLF Speed Dial Рассмотрим как настраиваются клавиши быстрого набора со световой индикацией. Прежде всего, переходим во вкладку System → Enterprise Parameters и в строке BLF For Call Lists выставляем параметр Enabled. По-умолчанию выставлен Disabled. Далее идем во вкладку Device → Device Settings → Phone Button Template. Здесь либо выбираем уже существующий шаблон, либо создаем новый. Подробнее о настройке шаблонов клавиш на телефонах Cisco можно почить в нашей статье. В открывшемся окне указываем для желаемых клавиш функцию Speed Dial BLF, и после чего сохраняем и применяем настройки. После этого переходим в меню Device → Phone, находим телефон, на котором ходим настроить BLF. Тут в поле Phone Button Template выбираем созданный нами шаблон и нажимаем Save и Apply Config. Слева в меню Association Information должен появиться пункт Add a New BLF SD. Нажимаем на него, и у нас открывается новое окно, где нужно ввести номер назначения, и описание для кнопки, которое будет отображаться на экране. Затем для сохранения настроек нажимаем Save. После этих действий BLF Speed Dial настроен на телефоне. Далее таким же образом можно настроить остальные аппараты.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59