По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Прогресс не стоит на месте и постепенно, телефонные станции на базе IP вытесняют устаревшие аналоговые АТС. При миграции с аналоговой на IP – АТС, основной головной болью для бизнеса является сохранение телефонной емкости, которая была подключена к аналоговой АТС и к которой так привыкли постоянные клиенты. В данном случае на помощь приходит FXO шлюз. Забегая вперед хочется отметить, что процесс подключения аналоговых линий всегда сложен: возникает множество проблем с корректной передачей CallerID, определением Busy Tones (сигналов занято), шумами или помехами на линии и прочими неприятностями. Итак, если вас не отпугивает вышеперечисленные трудности, то мы с радостью спешим рассказать как настроить бюджетный VoIP шлюз D-Link DVG-7111S и подключить его к IP-АТС Asterisk. Данная статья будет полезна тем, кто имеет аналоговые телефонные линии и хочет скрестить их сетью VoIP. Что такое FXO и FXS? Зачастую, некоторые компании, по тем или иным причинам, не могут отказаться от использования старых аналоговых линий. Причин может быть множество, например, провайдер может отказаться переводить на протокол SIP номер, который многие годы знают все заказчики или невозможность миграции со старой мини-АТС. Именно для таких случаев необходим VoIP-шлюз, который позволит состыковать устройства разных поколений. Разберемся с терминологией. Для соединения IP-АТС с аналоговыми линиями служат интерфейсы FXO (Foreign eXchange Office) и FXS (Foreign Exchange Station). Интерфейс FXS – это порт, с помощью которого аналоговый абонент подключается к аналоговой телефонной станции. Простейшим примером может служить телефонная розетка в стене у Вас дома. FXO – это интерфейс, в который включаются аналоговые линии. Следовательно, любая аналоговая линия имеет два конца, на одном из который интерфейс FXS (АТС), а на другом FXO (Телефон). Другими словами, чтобы было совсем понятно: FXS - если вам требуется подключить аналоговый телефон к IP – АТС, то воспользуйтесь FXS портом (шлюзом) FXO - если вам требуется подключить аналоговую линию от провайдера к IP – АТС, то воспользуйтесь FXO портом (шлюзом) Таким образом, для того чтобы скрестить сеть VoIP с аналоговой нам нужно иметь такое адаптирующее устройство, которое бы преобразовывало сигналы аналоговой телефонной линии в сигналы VoIP. Настройка В нашем примере мы имеем в распоряжении: аналоговую линию от провайдера услуг, IP-АТС Asterisk и шлюз D-Link DVG-7111S. Первое, что необходимо сделать – включить шлюз в одну сеть с IP-АТС Asterisk с помощью интерфейса WAN, порт LAN подключить в локальный свич, а также подключить имеющуюся аналоговую линию в порт FXO на шлюзе. Теперь шлюз можно найти по адресу 192.168.8.254, только предварительно нужно на управляющей АРМ настроить адрес 192.168.8.1. Перед нами открывается вэб-интерфейс, через который можно управлять шлюзом. Стандартный логин admin без пароля. Теперь необходимо сконфигурировать дополнительные сетевые настройки. Для этого переходим в раздел Setup -> Internet Setup и настраиваем новый адрес шлюза из той же сети, в которой находится Asterisk, а также адреса серверов DNS. Жмём Apply Далее переходим на вкладку VoIP Setup и настраиваем следующие параметры: PHONE 1 - FXS Настраивается если у вас есть отдельный аналоговый телефон. Сюда заносим его Extension, который зарегистрирован на Asterisk. В разделе PHONE 2 - FXO настраиваются параметры имеющейся аналоговой линии в соответствии с настройками транка на Asterisk. Номер и пароль на шлюзе и на Asterisk должна совпадать. В разделе SIP PROXY SERVER настраиваются параметры подключения к IP-Атс Asterisk. Указываем IP-адрес нашего сервера, порт (по умолчанию 5060) и время регистрации TTL. Нажимаем Apply. Во вкладке LAN Setup выбираем режим Bridge, всё остальное оставляем без изменений. Переходим в раздел ADVANCED -> VOIP CODECS и настраиваем нужный приоритет голосовых кодеков. В разделе CPT/ Cadence рекомендуем выключить опцию BTC, поскольку разные провайдеры могут по-разному отдавать сигнал “Занято” это может являться причиной внезапных обрывов. В разделе HOT LINE включаем данную функцию и вписываем номер телефонной линии. Теперь, при звонке из ТФоП, шлюз сам наберет данный номер с минимальной задержкой и вызов пойдёт через Asterisk. На этом настройка шлюза завершена, рекомендуем провести следующий набор действий MAINTENANCE -> Backup and Restore -> System--Save and Reboot -> Save all settings -> Reboot Настройка FreePBX Теперь необходимо на IP-АТС Asterisk создать соответствующий транк. В нашем случае, транк для подключения аналоговой линии от D-Link будет выглядеть так: В разделе sip Settings -> Outgoing указываем адрес, который настраивали на шлюзе host=192.168.1.2 //ip - адрес шлюза port=5060 context=from-trunk qualify=yes type=peer insecure=no В разделе sip Settings -> Incoming настраиваем такие же параметры аналоговой линии, которые настраивали на шлюзе. Номер и пароль должны совпадать. host=dynamic username=495123456 secret=тут_ваш_пароль context=from-trunk qualify=yes type=friend insecure=no Готово! Осталось только настроить входящую и исходящую маршрутизацию. О ее настройке можете почитать по ссылке ниже: Настройка маршрутизации вызовов
img
Сетевые устройства добавляются в сети для решения целого ряда проблем, включая подключение различных типов носителей и масштабирование сети путем переноса пакетов только туда, куда они должны идти. Однако маршрутизаторы и коммутаторы сами по себе являются сложными устройствами. Сетевые инженеры могут построить целую карьеру, специализируясь на решении лишь небольшого набора проблем, возникающих при передаче пакетов через сетевое устройство. Рисунок 1 используется для обсуждения обзора проблемного пространства. На рисунке 1 есть четыре отдельных шага: Пакет необходимо скопировать с физического носителя в память устройства; это иногда называют синхронизацией пакета по сети. Пакет должен быть обработан, что обычно означает определение правильного исходящего интерфейса и изменение пакета любым необходимым способом. Например, в маршрутизаторе заголовок нижнего уровня удаляется и заменяется новым; в фильтре пакетов с отслеживанием состояния пакет может быть отброшен на основании внутреннего состояния и т.п. Пакет необходимо скопировать из входящего интерфейса в исходящий. Это часто связано с перемещениями по внутренней сети или шине. Некоторые системы пропускают этот шаг, используя один пул памяти как для входящего, так и для исходящего интерфейсов; они называются системами с общей памятью. Пакет необходимо скопировать обратно на исходящий физический носитель; это иногда называют синхронизацией пакета по проводу. Примечание. Небольшие системы, особенно те, которые ориентированы на быструю и последовательную коммутацию пакетов, часто используют общую память для передачи пакетов с одного интерфейса на другой. Время, необходимое для копирования пакета в память, часто превышает скорость, с которой работают интерфейсы; системы с общей памятью избегают этого при копировании пакетов в память. Таким образом, проблемное пространство, обсуждаемоениже, состоит из следующего: Как пакеты, которые необходимо пересылать сетевым устройством, переносятся с входящего на исходящий физический носитель, и как пакеты подвергаются обработке на этом пути? Далее обсуждается часть решения этой проблемы. Физический носитель – Память Первым шагом в обработке пакета через сетевое устройство является копирование пакета с провода в память. Для иллюстрации этого процесса используется рисунок 2. На рисунке 2 представлены два этапа: Шаг 1. Набор микросхем физического носителя (PHY chip) будет копировать каждый временной (или логический) слот с физического носителя, который представляет один бит данных, в ячейку памяти. Эта ячейка памяти фактически отображается в приемное кольцо, которое представляет собой набор ячеек памяти (буфер пакетов), выделенный с единственной целью - прием пакетов, синхронизируемых по сети. Приемное кольцо и вся память буфера пакетов обычно состоят из памяти одного типа, доступной (совместно используемой) всеми коммутирующими компонентами на принимающей стороне линейной карты или устройства. Примечание. Кольцевой буфер используется на основе одного указателя, который увеличивается каждый раз, когда новый пакет вставляется в буфер. Например, в кольце, показанном на рисунке 2, указатель будет начинаться в слоте 1 и увеличиваться через слоты по мере того, как пакеты копируются в кольцевой буфер. Если указатель достигает слота 7 и поступает новый пакет, пакет будет скопирован в слот 1 независимо от того, было ли обработано содержимое слота 1 или нет. При коммутации пакетов наиболее трудоемкой и трудной задачей является копирование пакетов из одного места в другое; этого можно избежать, насколько это возможно, за счет использования указателей. Вместо перемещения пакета в памяти указатель на ячейку памяти передается от процесса к процессу в пределах пути переключения. Шаг 2. Как только пакет синхронизируется в памяти, некоторый локальный процессор прерывается. Во время этого прерывания локальный процессор удалит указатель на буфер пакетов, содержащий пакет, из кольца приема и поместит указатель на пустой буфер пакетов в кольцо приема. Указатель помещается в отдельный список, называемый входной очередью. Обработка пакета Как только пакет окажется во входной очереди, его можно будет обработать. Обработку можно рассматривать как цепочку событий, а не как одно событие. Рисунок 3 иллюстрирует это. Перед коммутацией пакета должна произойти некоторая обработка, например преобразование сетевых адресов, поскольку она изменяет некоторую информацию о пакете, используемом в фактическом процессе коммутации. Другая обработка может происходить после переключения. Коммутация пакета - довольно простая операция: Процесс коммутации ищет адрес назначения Media Access Control (MAC) или физического устройства в таблице пересылки (в коммутаторах это иногда называется таблицей обучения моста или просто таблицей моста). Исходящий интерфейс определяется на основе информации в этой таблице. Пакет перемещается из входной очереди в выходную очередь. Пакет никоим образом не изменяется в процессе коммутации; он копируется из очереди ввода в очередь вывода. Маршрутизация Маршрутизация - более сложный процесс, чем коммутация. Рисунок 4 демонстрирует это. На рисунке 4 пакет начинается во входной очереди. Тогда коммутационный процессор: Удаляет (или игнорирует) заголовок нижнего уровня (например, кадрирование Ethernet в пакете). Эта информация используется для определения того, должен ли маршрутизатор получать пакет, но не используется во время фактического процесса коммутации. Ищет адрес назначения (и, возможно, другую информацию) в таблице пересылки. Таблица пересылки связывает место назначения пакета со next hop пакета. Next hop может быть следующий маршрутизатор на пути к месту назначения или сам пункт назначения. Затем коммутирующий процессор проверяет таблицу interlayer discovery, чтобы определить правильный физический адрес, по которому следует отправить пакет, чтобы доставить пакет на один шаг ближе к месту назначения. Новый заголовок нижнего уровня создается с использованием этого нового адреса назначения нижнего уровня и копируется в пакет. Обычно адрес назначения нижнего уровня кэшируется локально вместе со всем заголовком нижнего уровня. Весь заголовок перезаписывается в процессе, называемом перезапись заголовка MAC. Теперь весь пакет перемещается из очереди ввода в очередь вывода. Почему именно маршрутизация? Поскольку маршрутизация-это более сложный процесс, чем коммутация, то почему именно маршрутизация? Для иллюстрации будет использован рисунок 5. Существует по меньшей мере три конкретных причины для маршрутизации, а не коммутации в сети. На рисунке 5 в качестве примера приведена небольшая сеть: Если канал связи [B,C] является физическим носителем другого типа, чем два канала связи, соединяющиеся с хостами, с различными кодировками, заголовками, адресацией и т. д., то маршрутизация позволит A и D общаться, не беспокоясь об этих различиях в типах каналов связи. Это можно было бы преодолеть в чисто коммутируемой сети с помощью преобразования заголовков, но преобразование заголовков на самом деле не уменьшает количество работы, чем маршрутизация в пути коммутации, поэтому нет особого смысла не маршрутизировать для решения этой проблемы. Другое решение может заключаться в том, чтобы каждый тип физического носителя согласовывал единую адресацию и пакетный формат, но, учитывая постоянное развитие физических носителей и множество различных типов физических носителей, это кажется маловероятным решением. Если бы вся сеть была коммутируемой, то B должен был бы знать полную информацию о достижимости для D и E, в частности, D и E должны были бы знать адреса физического или нижнего уровня для каждого устройства, подключенного к сегменту хоста за пределами C. Это может быть не большой проблемой в малой сети, но в больших сетях с сотнями тысяч узлов или глобальным интернетом это не будет масштабироваться—просто слишком много состояний для управления. Можно агрегировать информацию о достижимости с помощью адресации нижнего уровня, но это сложнее, чем использовать адрес более высокого уровня, назначенный на основе топологической точки присоединения устройства, а не адрес, назначенный на заводе, который однозначно идентифицирует набор микросхем интерфейса. Если D отправляет широковещательную рассылку «всем устройствам в сегменте», A получит широковещательную рассылку, если B и C являются коммутаторами, но не если B и C являются маршрутизаторами. Широковещательные пакеты нельзя исключить, поскольку они являются неотъемлемой частью практически каждого транспортного протокола, но в чисто коммутируемых сетях широковещательные передачи представляют собой очень трудно решаемую проблему масштабирования. Трансляции блокируются (или, скорее, потребляются) на маршрутизаторе. Примечание. В мире коммерческих сетей термины маршрутизация и коммутация часто используются как синонимы. Причина этого в первую очередь в истории маркетинга. Первоначально маршрутизация всегда означала «переключаемая программно», тогда как коммутация всегда означала «переключаемая аппаратно». Когда стали доступны механизмы коммутации пакетов, способные переписывать заголовок MAC на аппаратном уровне, они стали называться «коммутаторами уровня 3», которые в конечном итоге были сокращены до простой коммутации. Например, большинство «коммутаторов» центров обработки данных на самом деле являются маршрутизаторами, поскольку они действительно выполняют перезапись MAC-заголовка для пересылаемых пакетов. Если кто-то называет часть оборудования коммутатором, то лучше всего уточнить, является ли это коммутатором уровня 3 (правильнее - маршрутизатор) или коммутатором уровня 2 (правильнее - коммутатором). Примечание. Термины канал связи и соединение здесь используются как синонимы. Канал связи - это физическое или виртуальное проводное или беспроводное соединение между двумя устройствами. Equal Cost Multipath В некоторых проектах сети сетевые администраторы вводят параллельные каналы между двумя узлами сети. Если предположить, что эти параллельные каналы равны по пропускной способности, задержке и т. д., они считаются равными по стоимости. В нашем случае каналы считаются многопутевыми с равной стоимостью (equal cost multipath - ECMP). В сетевых технологиях в производственных сетях часто встречаются два варианта. Они ведут себя одинаково, но отличаются тем, как каналы группируются и управляются сетевой операционной системой.
img
В этой серии лекций продолжается рассмотрение распределенных плоскостей управления, добавляя к изучению еще три протокола маршрутизации. Два из них являются протоколами состояния канала, а третий – единственный, широко распространенный протокол вектора пути, Border Gateway Protocol (BGP) v4. В этих лекция мы уделим внимание тому, почему каждый из этих протоколов реализован именно так. Очень легко увлечься и запутаться в изучении мельчайших деталей работы протоколов, но нам гораздо важнее помнить о проблемах, для решения которых эти протоколы были разработаны, и о диапазоне возможных решений. Каждый изучаемый вами протокол будет представлять собой комбинацию умеренно ограниченного набора доступных решений: существует очень мало доступных новых решений. Существуют различные комбинации решений, реализованных иногда уникальными способами для решения конкретных наборов проблем. Изучая эти принципы работы протокола, вы должны попытаться выбрать общие решения, которые они реализуют. Затем отразить эти решения обратно в набор проблем, которые должна решить любая распределенная плоскость управления, чтобы устранить проблемы в реальных сетях. Краткая история OSPF и IS-IS Протокол Intermediate System to Intermediate System (IS-IS или IS to IS) был разработан в 1978 году. Open Shortest Path First (OSPF) изначально задумывался как альтернатива IS-IS, предназначенная специально для взаимодействия с сетями IPv4. В 1989 году первая спецификация OSPF была опубликована Internet Engineering Task Force, а OSPFv2, значительно улучшенная спецификация, была опубликована в 1998 году как RFC2328. OSPF, безусловно, был более широко используемым протоколом, причем ранние реализации IS-IS практически не применялись в реальном мире. Были некоторые аргументы за и против, и многие функции были «позаимствованы» из одного протокола в другой (в обоих направлениях). В 1993 году компания Novell, в то время крупный игрок в мире сетевых технологий, использовала протокол IS-IS как основу для замены собственного протокола маршрутизации Netware. Протокол транспортного уровеня Novell, Internet Packet Exchange (IPX), в то время работал на большом количестве устройств, и возможность использования одного протокола для маршрутизации нескольких транспортных протоколов была решающим преимуществом на сетевом рынке (EIGRP, также может маршрутизировать IPX). Этот протокол замены был основан на IS-IS. Чтобы реализовать новый протокол Novell, многие производители просто переписали свои реализации IS-IS, значительно улучшив их в процессе. Это переписывание сделало IS-IS привлекательным для крупных провайдеров Интернет-услуг, поэтому, когда они отказались от протокола RIP, они часто переходили на IS-IS вместо OSPF. Intermediate System to Intermediate System Protocol В протоколе Intermediate System to Intermediate System (IS-IS) маршрутизатор называется Intermediate System (Промежуточной системой (IS), а хост- End System (Конечной системой (ES). Оригинальный дизайн набора состоял в том, чтобы каждое устройство, а не интерфейс, имело один адрес. Службы и интерфейсы на устройстве будут иметь точку доступа к сетевым службам (Network Service Access Point - NSAP), используемую для направления трафика к определенной службе или интерфейсу. Таким образом, с точки зрения IP, IS-IS изначально был разработан в рамках парадигмы маршрутизации хоста. Промежуточные и конечные системы связываются непосредственно с помощью протокола End System to Intermediate System (ES-IS), позволяющего IS-IS обнаруживать службы, доступные в любой подключенной конечной системе, а также сопоставлять адреса нижних интерфейсов с адресами устройств более высокого уровня. Еще один интересный аспект дизайна IS-IS - он работает на канальном уровне. Разработчикам протокола не имело большого смысла запускать плоскость управления для обеспечения доступности транспортной системы через саму транспортную систему. Маршрутизаторы не будут пересылать пакеты IS-IS, поскольку они параллельны IP в стеке протоколов и передаются по локальным адресам связи. Когда была разработана IS-IS, скорость большинства каналов была очень низкой, поэтому дополнительная инкапсуляция также считалась расточительной. Каналы связи также довольно часто выходили из строя, теряя и искажая пакеты. Следовательно, протокол был разработан, чтобы противостоять ошибкам при передаче и потере пакетов. Адресация OSI Поскольку IS-IS был разработан для другого набора транспортных протоколов, он не использует адреса Internet Protocol (IP) для идентификации устройств. Вместо этого он использует адрес взаимодействия открытых систем (Open Systems Interconnect - OSI) для идентификации как промежуточных, так и конечных систем. Схема адресации OSI несколько сложна, включая идентификаторы для органа, распределяющего адресное пространство, идентификатор домена, состоящий из двух частей, идентификатор области, системный идентификатор и селектор услуг (N-селектор). Многие из этих частей адреса OSI имеют переменную длину, что еще больше затрудняет понимание системы. Однако в мире IP используются только три части этого адресного пространства. Authority Format Identifier (AFI), Initial Domain Identifier (IDI), High-Order Domain Specific Part (HO-DSP) и область, где все обрабатывается как одно поле. Системный идентификатор по-прежнему рассматривается как системный идентификатор. N Selector, или NSAP, обычно игнорируется (хотя есть идентификатор интерфейса, который похож на NSAP, используемый в некоторых конкретных ситуациях). Таким образом, промежуточные системные адреса обычно принимают форму, показанную на рисунке 1. На рисунке 1: Точка разделения между системным идентификатором и остальной частью адреса находится в шестом октете или если отсчитать двенадцать шестнадцатеричных цифр с правой стороны. Все, что находится слева от шестого октета, считается частью адреса области. Если N-селектор включен, это один октет или две шестнадцатеричные цифры справа от идентификатора системы. Например, если для адреса A был включен N-селектор, это могло бы быть 49.0011.2222.0000.0000.000A.00. Если в адрес включен N-селектор, вам нужно пропустить N-селектор при подсчете более шести октетов, чтобы найти начало адреса области. A и B находятся в одном домене flooding рассылки, потому что у них одни и те же цифры от седьмого октета до крайнего левого октета в адресе. C и D находятся в одном flooding domain. A и D представляют разные системы, хотя их системный идентификатор одинаков. Однако такая адресация может сбивать с толку и поэтому не используется в реальных развертываниях IS-IS (по крайней мере, вдумчивыми системными администраторами). Вы посчитать эту схему адресации более сложной, чем IP, даже если вы регулярно работаете с IS-IS в качестве протокола маршрутизации. Однако есть большое преимущество в использовании схемы адресации, отличной от той, которая используется на транспортном уровне в сети. Гораздо проще различать типы устройств в сети и гораздо проще отделить узлы от адресатов, если продумать алгоритм Дейкстры по кратчайшему пути (SPF). Маршаллинг данных в IS-IS IS-IS использует довольно интересный механизм для маршалинга данных для передачи между промежуточными системами. Каждая IS генерирует три вида пакетов: Hello-пакеты Пакеты с порядковыми номерами (PSNP и CSNP) Одиночный пакет состояния канала (Link State Packet - LSP) Единый LSP содержит всю информацию о самой IS, любых доступных промежуточных системах и любых доступных адресатах, подключенных к IS. Этот единственный LSP форматируется в Type Length Vectors (TLV), которые содержат различные биты информации. Некоторые из наиболее распространенных TLV включают следующее: Типы 2 и 22: достижимость к другой промежуточной системе Типы 128, 135 и 235: достижимость до пункта назначения IPv4 Типы 236 и 237: достижимость к адресату IPv6 Существует несколько типов, потому что, IS-IS изначально поддерживал 6-битные метрики (большинство процессоров на момент появления протокола могли хранить только 8 бит за раз, и два бита были «украдены» из размера поля, чтобы нести информацию о том, был ли маршрут внутренним или внешним, а также другую информацию). Со временем, по мере увеличения скорости связи, были введены различные другие метрические длины, включая 24 - и 32-битные метрики, для поддержки широких метрик. Одиночный LSP, несущий всю информацию о доступности IS, IPv4 и IPv6, а также, возможно, теги MPLS и другую информацию, не поместится в один пакет MTU. Для фактической отправки информации по сети IS-IS разбивает LSP на фрагменты. Каждый фрагмент рассматривается как отдельный объект в процессе лавинной рассылки. Если изменяется один фрагмент, лавинной рассылкой по сети распространяется только измененный фрагмент, а не весь LSP. Благодаря этой схеме IS-IS очень эффективен при лавинной рассылке информации о новой топологии и достижимости без использования полосы пропускания, превышающей минимальную требуемую. Обнаружение соседей и топологии Хотя IS-IS изначально был разработан, чтобы узнать о доступности сети через протокол ES-IS, когда IS-IS используется для маршрутизации IP, он «действует так же, как протоколы IP», и узнает о достижимых местах назначения через локальную конфигурацию каждого из них. устройства и путем перераспределения из других протоколов маршрутизации. Следовательно, IS-IS - это проактивный протокол, который изучает и объявляет достижимость без ожидания пакетов, которые будут переданы и переадресованы через сеть. Формирование соседей в IS-IS довольно просто. Рисунок 2 иллюстрирует этот процесс. На рисунке 2: IS A передает приветствие в сторону B. Это приветствие содержит список соседей, от которых получен сигнал, который будет пустым. Настройку времени удержания (hold time) B следует использовать для A, и добавляется к максимальному блоку передачи (MTU) локального интерфейса для канала связи. Пакеты приветствия дополняются только до завершения процесса формирования смежности. Не каждый пакет приветствия дополняется MTU канала. IS B передает приветствие к A. Это приветствие содержит список соседей, от которых получен ответ, который будет включать A. Настройку времени удержания A следует использовать для B. Добавляется к MTU локального интерфейса. Поскольку A находится в списке «слышимых соседей» B, A рассмотрит B и перейдет к следующему этапу формирования соседей. Как только A включил B в список «услышанных соседей» хотя бы в одно приветствие, B рассмотрит A и перейдет к следующему этапу формирования соседа. B отправит полный список всех записей, которые он имеет в своей таблице локальной топологии (B описывает LSP, которые он имеет в своей локальной базе данных). Этот список отправляется в Complete Sequence Number Packet (CSNP). A проверит свою локальную таблицу топологии, сравнив ее с полным списком, отправленным B. Любые записи в таблице топологии (LSP), которых он не имеет, он будет запрашивать у B с использованием Partial Sequence Number Packet (PSNP). Когда B получает PSNP, он устанавливает флаг Send Route Message (SRM) для любой записи в его локальной таблице топологии (LSP), запрошенной A. Позже процесс лавинной рассылки будет проходить по таблице локальной топологии в поисках записей с установленным флагом SRM. Он заполнит эти записи, синхронизируя базы данных в A и B. Примечание. Описанный здесь процесс включает изменения, внесенные в RFC5303, который определяет трехстороннее рукопожатие, и дополнение приветствия, которое было добавлено в большинство реализаций примерно в 2005 году. Установка флага SRM отмечает информацию для лавинной рассылки, но как на самом деле происходит лавинная рассылка? Надежная лавинная рассылка. Для правильной работы алгоритма SPF Дейкстры (или любого другого алгоритма SPF) каждая IS в flooding domain должна совместно использовать синхронизированную базу данных. Любая несогласованность в базе данных между двумя промежуточными системами открывает возможность зацикливания маршрутизации. Как IS-IS гарантирует, что подключенные промежуточные системы имеют синхронизированные базы данных? В этой лекции описывается процесс создания point-to-point каналов. Далее будут описаны модификации, внесенные в процесс flooding domain по каналам с множественным доступом (например, Ethernet). IS-IS полагается на ряд полей в заголовке LSP, чтобы гарантировать, что две промежуточные системы имеют синхронизированные базы данных. Рисунок 3 иллюстрирует эти поля. На рисунке 3: Длина пакета (packet length) содержит общую длину пакета в октетах. Например, если это поле содержит значение 15 , длина пакета составляет 15 октетов. Поле длины пакета составляет 2 октета, поэтому оно может описывать пакет длиной до 65 536 октетов - больше, чем даже самые большие MTU канала. Поле оставшегося времени жизни (remaining lifetime) также составляет два октета и содержит количество секунд, в течение которых этот LSP действителен. Это вынуждает периодически обновлять информацию, передаваемую в LSP, что является важным соображением для старых технологий передачи, где биты могут быть инвертированы, пакеты могут быть усечены или информация, передаваемая по каналу связи, может быть повреждена. Преимущество таймера, который ведет обратный отсчет, а не на увеличение, состоит в том, что каждая IS в сети может определять, как долго ее информация должна оставаться действительной независимо от каждой другой IS. Недостаток в том, что нет четкого способа отключить описанный функционал. Однако 65 536 секунд - это большое время - 1092 минуты, или около 18 часов. Повторная загрузка каждого фрагмента LSP в сети примерно каждые 18 часов создает очень небольшую нагрузку на работу сети. LSP ID описывает сам LSP. Фактически, это поле описывает фрагмент, поскольку оно содержит идентификатор исходной системы, идентификатор псевдоузла (функцию этого идентификатора рассмотрим позже) и номер LSP, или, скорее, номер фрагмента LSP. Информация, содержащаяся в одном фрагменте LSP, рассматривается как «один блок» во всей сети. Отдельный фрагмент LSP никогда не «рефрагментируется» какой-либо другой IS. Это поле обычно составляет 8 октетов. Порядковый номер (Sequence Number) описывает версию этого LSP. Порядковый номер гарантирует, что каждая IS в сети имеет одинаковую информацию в своей локальной копии таблицы топологии. Это также гарантирует, что злоумышленник (или «кривая» реализация) не сможет воспроизвести старую информацию для замены новой. Контрольная сумма (Checksum) гарантирует, что информация, передаваемая во фрагменте LSP, не была изменена во время передачи. Лавинная рассылка описана на рисунке 4. На рисунке 4: А подключен к 2001: db8: 3e8: 100 :: / 64. A создает новый фрагмент, описывающий этот новый достижимый пункт назначения. A устанавливает флаг SRM на этом фрагменте в сторону B. Процесс лавинной рассылки в какой-то момент (обычно это вопрос миллисекунд) проверит таблицу топологии и перезальет все записи с установленным флагом SRM. Как только новая запись будет помещена в свою таблицу топологии, B создаст CSNP, описывающий всю свою базу данных, и отправит его в A. Получив этот CSNP, A удаляет свой флаг SRM в направлении B. B проверяет контрольную сумму и сравнивает полученный фрагмент с существующими записями в своей таблице топологии. Поскольку нет другой записи, соответствующей этой системе и идентификатору фрагмента, он поместит новый фрагмент в свою таблицу локальной топологии. Учитывая, что это новый фрагмент, B инициирует процесс лавинной рассылки по направлению к C. А как насчет удаления информации? Есть три способа удалить информацию из системы IS-IS flooding: Исходящая IS может создать новый фрагмент без соответствующей информации и с более высоким порядковым номером. Если весь фрагмент больше не содержит какой-либо действительной информации, исходящая IS может заполнить фрагмент с оставшимся временем жизни (lifetime) равным 0 секунд. Это приводит к тому, что каждая IS в домене лавинной рассылки повторно загружает фрагмент zero age и удаляет его из рассмотрения для будущих вычислений SPF. Если таймер lifetime во фрагменте истекает в любой IS, фрагмент заполняется лавинной рассылкой с zero age оставшегося времени жизни. Каждая IS, получающая этот фрагмент с zero age, проверяет, что это самая последняя копия фрагмента (на основе порядкового номера), устанавливает оставшееся время жизни для своей локальной копии фрагмента на ноль секунд и повторно загружает фрагмент. Это называется удалением фрагмента из сети. Когда IS отправляет CNSP в ответ на полученный фрагмент, она фактически проверяет всю базу данных, а не только один полученный фрагмент. Каждый раз, когда фрагмент лавинно рассылается по сети, вся база данных проверяется между каждой парой промежуточных систем. Подведение итогов об IS-IS IS-IS можно описать как: Использование лавинной рассылки для синхронизации базы данных в каждой промежуточной системе в flooding domain (протокол состояния канала). Расчет loop-free -путей с использованием алгоритма SPF Дейкстры. Изучение доступных пунктов назначения через конфигурацию и локальную информацию (проактивный протокол). Проверка двусторонней связи при формировании соседей путем переноса списка «замеченных соседей» в своих пакетах приветствия. Удаление информации из домена лавинной рассылки с помощью комбинации порядковых номеров и полей оставшегося времени жизни (lifetime) в каждом фрагменте. Проверка MTU каждой линии связи путем заполнения первоначально обмененных пакетов приветствия. Проверка правильности информации в синхронизированной базе данных с помощью контрольных сумм, периодического перезапуска и описаний базы данных, которыми обмениваются промежуточные системы. IS-IS - это широко распространенный протокол маршрутизации, который доказал свою работоспособность в широком диапазоне сетевых топологий и эксплуатационных требований.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59