По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Чтобы перенести сетевой трафик групп распределенных портов в группу агрегации каналов (Link Aggregation Group - LAG), нужно создать новую группу LAG на распределяющем коммутаторе. Порядок действий В веб-клиенте vSphere перейдите к распределяющему коммутатору. Во вкладке Configure (Конфигурация) разверните Settings (Настройки) и выберите LACP() Щелкните на значок New Link Aggregation Group(Создать группу объединенных ссылок) Введите имя для новой LAG. Установите количество портов для LAG. Установите такое же количество портов для группы LAG, как и количество портов в канале портов LACP на физическом коммутаторе. Порт LAG имеет ту же функцию, что и восходящая линия (uplink) на распределяющем коммутаторе. Все порты LAG образуют команду NIC в контексте LAG. Выберите режим согласования LACP для группы LAG. Активный режимВсе порты LAG находятся в активном режиме согласования. Порты LAG инициируют согласование с каналом порта LACP на физическом коммутаторе, отправляя пакеты LACP.Пассивный режимПорты LAG находятся в режиме пассивного согласования. Они отвечают на пакеты LACP, которые они получают, но не согласовывают с LACP. Если порты с поддержкой LACP на физическом коммутаторе находятся в активном режиме, вы можете установить порты LAG в пассивный режим и наоборот. Выберите режим балансировки нагрузки из алгоритмов хэширования, которые определяет LACP. Алгоритм хеширования должен совпадать с алгоритмом, установленным для канала порта LACP на физическом коммутаторе. Установите виртуальную локальную сеть (VLAN) и политики NetFlow для LAG. Этот параметр активен, когда переопределение политик VLAN и NetFlow для отдельных портов восходящей линии связи включено в группе портов восходящей линии связи. Если вы установите политики VLAN и NetFlow для LAG, они переопределят политики, установленные на уровне группы портов восходящей линии связи. Нажмите OK Итоги Новая LAG не используется в порядке группировки и отработки отказа распределенных групп портов. Физические сетевые карты не назначены портам LAG. Как и в случае автономных каналов связи, LAG представляется на каждом хосте, связанном с распределяющим коммутатором. Например, если вы создаете LAG1 с двумя портами на распределяющем коммутаторе, LAG 1 с двумя портами создается на каждом хосте, связанном с распределяющим коммутатором. Что делать дальше Установить LAG как резервную в конфигурации группирования и отработки отказа распределенных групп портов. Таким образом, вы создаете промежуточную конфигурацию, которая позволяет переносить сетевой трафик в группу LAG без потери сетевого подключения.
img
Компания Juniper является очень крупным производителем сетевого оборудования в мире - после Cisco and Huawei. После того как вы купили, установили и скоммутировали новое оборудование, возникает вопрос о его правильной настройке. Преимуществом коммутаторов от производителя Juniper, в основном, является возможность объединения до шести коммутаторов в одно единое устройство с надежным и удобным управлением портами, сохраняя стабильную и бесперебойную работу сети. Настройка сетевого интерфейса Настройка QoS (качество обслуживания) Virtual Chassis (объединение коммутаторов) Реализация возможности сброса до заводских настроек Настроив данные компоненты, вы сможете реализовать работу сети с использованием в ней большого количества устройств для осуществления передачи трафика. Настройка сетевого интерфейса Интерфейс коммутатора отвечает за реализацию передачи данных между сетью и пользователем, что и является главной задачей коммутатора. Его конфигурация осуществляется с помощью следующих строк кода: root> configure Entering configuration mode [edit] root# edit interfaces [edit interfaces] root# Конфигурация L3: [edit interfaces] root# set em0 unit 0 family inet address 100.0.0.1/30 Где: Em0 - физический интерфейс, а Family inet - позволяет выбрать протокол интерфейса. Команда "show" позволит из Configuration Mode проверить результат вашей настройки: [edit interfaces] root# show em0 { unit 0 { family inet { address 100.0.0.1/30; } } } [edit interfaces] Теперь примените настройки с помощью следующей команды: root# commit commit complete С помощью команды ping осуществим проверку конфигурации: root> ping 100.0.0.2 rapid PING 100.0.0.2 (100.0.0.2): 56 data bytes !!!!! --- 100.0.0.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.402/0.719/1.306/0.343 ms Конфигурация L2 root> configure Entering configuration mode [edit] root# edit interfaces em0 [edit interfaces em0] Необходимо задать дуплекс на интерфейсе: [edit interfaces em0] root# set link-mode full-duplex [edit interfaces em0] root# Примечание: L2 - устройства, работающие на канальном уровне, при этом коммутатором занимается фреймами. А L3 взаимодействуют с IP-адресами и осуществляют маршрутизацию. Конфигурация L3 включает большее число параметров за счет расширенного функционала. Настройка Virtual Chassis После правильной настройки интерфейса, следует перейти к объединению коммутаторов, которое позволит облегчить управление устройствами, а также повысить надежность работы сети, за счет взаимозаменяемости устройств. Следует отметить, что коммутаторы Juniper не имеют отдельным порт VCP, поэтому придется настраивать обычный интерфейс в качестве VCP. Конфигурация VCP вручную: Включите все коммутаторы, также вам понадобятся их заводская маркировка, которую следует записать. Для примера используем следующие: CT0216330172 CV0216450257 Включите коммутатор, который будет выполнять функцию master switch, после чего сделайте сброс настройка с помощью следующей строки кода: request system zeroize Перезагрузив систему, выполните следующие строки: ezsetup set system host-name sw_master set system domain-name metholding.int set system domain-search metholding.int set system time-zone Europe/Moscow set system root-authentication plain-text-password set system name-server 10.10.6.26 set system name-server 10.10.6.28 set system services ssh protocol-version v2 set system ntp server 10.10.1.130 version 4 set system ntp server 10.10.1.130 prefer set vlans Management description 10.10.45.0/24 set vlans Management vlan-id 100 set vlans Management l3-interface vlan.1 set interfaces vlan unit 1 family inet address 10.10.45.100/24 set routing-options static route 0.0.0.0/0 next-hop 10.10.45.1 set interfaces ge-0/0/47 unit 0 family ethernet-switching port-mode trunk set interfaces ge-0/0/47 unit 0 family ethernet-switching vlan members Management Активируем preprovisioned configuration mode: set virtual-chassis preprovisioned Вносим серийные номера оборудования: set virtual-chassis member 0 serial-number CT02/16330172 role routing-engine set virtual-chassis member 1 serial-number CV0216450257 role routing-engine set virtual-chassis no-split-detection Проверьте результат, с помощью следующей строки: root@sw-master> show virtual-chassis status Обнулите конфигурацию и включайте остальные коммутаторы: request system zeroize Раздел virtual-chassis в конфигурации должен быть пустой, а для подстраховки, используйте команду: delete virtual-chassis Настроим порты VCP для каждого коммутатора. Для данного примера, соедините коммутаторы портами ge-0/0/0 и ge-0/0/1 соответственно. Теперь задайте эти строки кода на каждом из коммутаторов: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 --------------------ВЫВОД---------------------------- root> show interfaces terse Interface Admin Link Proto Local Remote vcp-255/0/0 up up vcp-255/0/0.32768 up up vcp-255/0/1 up up vcp-255/0/1.32768 up up ge-0/0/2 up down ge-0/0/2.0 up down eth-switch Теперь два коммутатора объединились, проверить можно с помощью команды: show virtual-chassis status show virtual-chassis vc-port Если вы захотите добавить дополнительных участников к virtual-chassis, вам будет необходимо очистить конфигурацию нового коммутатора: show interfaces terse | match vcp Если есть, их надо удалить с командой: request virtual-chassis vc-port delete pic-slot 0 port 0 Внесите серийный номер дополнительного устройства: set virtual-chassis member 2 serial-number CT0217190258 role line-card Настройка портов VCP в новом коммутаторе, в котором мы соединяем следующими портами - ge-0/0/0 и ge-0/0/1: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 Теперь проверьте их наличие: show interfaces terse | match vcp НастройкаQoS Технология QoS используется для распределение используемого трафика и ранжирование на классы с различным приоритетом. Технология необходима для увеличения вероятности пропускания трафика между точками в сети. Сейчас мы рассмотрим деление потока трафика с приоритетом на ip-телефонию и видеоконференцсвязь на коммутаторе и использованием настроек по умолчанию class-of-service (CoS). Допустим, что ip-телефоны подключены к коммутатору, а для маркировки ip-пакетов от ip-PBX и других ip-телефонов используются следующие показания DSCP: 46 - ef - медиа (RTP) 24 - cs3 - сигнализация (SIP, H323, Unistim) 32 - cs4 - видео с кодеков (RTP) 34 - af41 - видео с телефона, софтового клиента, кодека (RTP) 0 - весь остальной трафик без маркировки. DSCP - является самостоятельным элементом в архитектуре сети, описывающий механизм классификации, а также Обеспечивающий ускорение и снижение задержек для мультимедийного трафика. Используется пространство поля ToS, являющийся компонентом вспомогательным QoS. Теперь требуется dscp ef и af отнести к необходимым внутренним классам expedited-forwarding и assured-forwarding. За счет конфигурации classifiers, появляется возможность создания новых классов. ex2200> show configuration class-of-service classifiers dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } ex2200> show configuration class-of-service schedulers sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } Наименования можно выбрать произвольно, но а процент выделенных буферов - в соответствии с необходимостью. Ключевым приоритетом работы QoS является определение трафика с ограничением пропускающей полосы в зависимости от потребности в ней. Шедулеры сопоставляются в соответствии с внутренними классами, в результате которого scheduler-map и classifier необходимо применяется ко всем интерфейсам, используя и описывая их в качестве шаблона. К интерфейсу возможно применять специфические настройки, подразумевающие возможность написания всевозможных scheduler и scheduler-maps для различных интерфейсов. Конечная конфигурация имеет следующий вид: ex2200> show configuration class-of-service classifiers { dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } } host-outbound-traffic { forwarding-class network-control; } interfaces { ge-* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } ae* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } } scheduler-maps { custom-maps { forwarding-class network-control scheduler sc-nc; forwarding-class expedited-forwarding scheduler sc-ef; forwarding-class assured-forwarding scheduler sc-af; forwarding-class best-effort scheduler sc-be; } } schedulers { sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } } Перед использованием данной настройки, проверьте командой commit check. А при наличии следующей ошибки, следует учесть следующее: [edit class-of-service interfaces] 'ge-*' One or more "strict-high" priority queues have lower queue-numbers than priority "low" queues in custom-maps for ge-*. Ifd ge-* supports strict-high priority only on higher numbered queues. error: configuration check-out failed В итоге мы не можем указать приоритет "strict-high" только для 5-ой очереди, когда у 7-ой останется приоритет "low". При этом можно решить проблему следующим образом: настроить для network-control приоритет "strict-high". Применив конфигурацию, определенный процент фреймов в очередях будет потеряна. Требуется обнулить счетчики, проверить счетчики дропов через некоторое время, где переменные значения не равны нулю. clear interfaces statistics all show interfaces queue | match dropped | except " 0$" При росте счетчиков дропа в конфигурации есть ошибка. Если вы пропустили описание в class-of-service interfaces шаблоном или в явном виде, то трафик в классах со стопроцентной вероятностью дропнется. Правильная работа выглядит следующим образом: ex2200> show interfaces queue ge-0/0/22 Physical interface: ge-0/0/22, Enabled, Physical link is Up Interface index: 151, SNMP ifIndex: 531 Forwarding classes: 16 supported, 4 in use Egress queues: 8 supported, 4 in use Queue: 0, Forwarding classes: best-effort Queued: Transmitted: Packets : 320486 Bytes : 145189648 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 1, Forwarding classes: assured-forwarding Queued: Transmitted: Packets : 317 Bytes : 169479 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 5, Forwarding classes: expedited-forwarding Queued: Transmitted: Packets : 624 Bytes : 138260 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 7, Forwarding classes: network-control Queued: Transmitted: Packets : 674 Bytes : 243314 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Переход к заводским настройкам Если вам избавится от вашей конфигурации, которая работает некорректно вы можете сбросить настройки до заводских параметров. Советуем использовать данную функции, предусмотренную производителем оборудования, в случае реальной сложности в поиске ошибки, выполнив конфигурацию заново, вы можете заметно сэкономить свое время. Самый простой способ, это ввод следующей команды: load factory defaults После ввода команды, система оповестит Вас о том, что в данный момент будет осуществлена активация заводских настроек по умолчанию. А с помощью привычной команды "commit" активируем настройки и перезагружаемся. Мы рассмотрели базовые настройки коммутаторов Juniper, позволяющих создание надежной и гибкой сети для различных нужд.
img
В статье речь пойдет о логах в Астериск. Существует встроенный модуль для FreePBX - Asterisk Logfiles Module, который позволяет просмотреть самые недавние события. Просмотр логов с помощью FreePBX Модуль можно найти по следующему пути: Reports – Asterisk Logfiles. Однако, данный модуль мало полезен, если требуется проверить не только недавние логи, но и недельной, а то и месячной давности. Если появилась такая нужда, требуется подключится к вашей АТС по SSH, например, используя терминальный клиент PuTTy. Кроме того, если есть физический доступ к серверу, можно использовать и его. Почему проще использовать терминальный клиент? Ответ прост – PuTTy поддерживает операции копироватьвставить, что многократно упрощает работу. Просмотр логов через консоль Итак, порядок действий для доступа к логам Астериск: Вход на АТС, используя рутовый логин и пароль. После успешного входа вводится команда cd /var/log/asterisk Для вывода списка лог-файлов нужно ввести команду ls –l Обычно, все файлы называются «full-DATE», где DATE – дата логирования. Если требуется посмотреть и отсеять сегодняшний лог-файлы, нужно ввести nano full . Данная команда откроет лог-файл с помощью текстового редактора nano. Nano сразу же продемонстрирует список команд для управлением текстовым редактором Для просмотра можно использовать клавиши Page Up и Page Down, CTRL-W для поиска и CTRL-X для выхода. Соответственно, для открытия конкретного файла, нужно написать nano full-20160629 Если вы случайно внесли изменения и пересохранили лог-файл, то Астериск прекратит логирование сегодняшнего дня. Для исправления данной проблемы необходимо запустить следующую команду amportal restart . Данная команда будет ждать 120 секунд для завершения текущих вызовов, и по прошествии 120 секунд все вызовы будут принудительно завершены. Так же возможно использовать команду Linux grep, к примеру для вывода в текущем лог-файле всех событий связанных с недоступным транком - grep “is now” full Если результатов слишком много, есть возможность скопировать их в новый файл - grep "is now" full > newlogfile Для его просмотра можно использовать уже знакомый редактор nano - nano newlogfile Удалить данный файл можно командой - rm tempfile Так же есть возможность просматривать логи в реальном времени - asterisk –r Для выхода используется команда - exit И ещё один способ просмотра лог-файлов в реальном времени – tail.Делает это так: cd /var/log/asterisk tail –f full Для выхода нужно нажать CTRL-C.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59