По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Обычные задачи системного администратора включают настройку, обслуживание, устранение неполадок и управление серверами и сетями в центрах обработки данных. В Linux существует множество инструментов и утилит, предназначенных для административных целей. В этой статье мы рассмотрим некоторые из наиболее часто используемых инструментов и утилит командной строки для управления сетями в Linux в различных категориях. Мы объясним некоторые распространенные примеры использования, которые значительно упростят управление сетью в Linux. Инструменты настройки, поиска, устранения неполадок и отладки сети 1. Команда ifconfig ifconfig - это инструмент командной строки (CLI) для настройки сетевого интерфейса, который также используется для инициализации интерфейсов во время загрузки системы. Когда сервер запущен и работает, ifconfig можно использовать для назначения IP-адреса интерфейсу и включения или отключения интерфейса по требованию. Ifconfig также используется для просмотра статуса IP-адреса, MAC-адреса, а также размера MTU (максимальная единица передачи - Maximum Transmission Unit) текущих активных интерфейсов. Таким образом, ifconfig полезен для отладки или настройки системы. Вот пример для отображения статуса всех активных сетевых интерфейсов. $ ifconfig enp1s0 Link encap:Ethernet HWaddr 28:d2:44:eb:bd:98 inet addr:192.168.0.103 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::8f0c:7825:8057:5eec/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:169854 errors:0 dropped:0 overruns:0 frame:0 TX packets:125995 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:174146270 (174.1 MB) TX bytes:21062129 (21.0 MB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:15793 errors:0 dropped:0 overruns:0 frame:0 TX packets:15793 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1 RX bytes:2898946 (2.8 MB) TX bytes:2898946 (2.8 MB) Чтобы вывести список всех доступных на данный момент интерфейсов, включенных или выключенных, используйте флаг -a. $ ifconfig -a Для того чтобы назначить IP-адрес интерфейсу, используйте следующую команду: $ sudo ifconfig eth0 192.168.56.5 netmask 255.255.255.0 Чтобы активировать сетевой интерфейс, введите: $ sudo ifconfig up eth0 Чтобы деактивировать или отключить сетевой интерфейс, введите: $ sudo ifconfig down eth0 Внимание: Хотя ifconfig - отличный инструмент, теперь он устарел (deprecated), и его заменой является команда ip, о которой мы расскажем ниже. 2. Команда IP Команда IP - еще одна полезная утилита командной строки для отображения и управления маршрутизацией, сетевыми устройствами, интерфейсами. Это замена для ifconfig и многих других сетевых команд. Следующая команда покажет IP-адрес и другую информацию о сетевом интерфейсе. $ ip addr show 1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: enp1s0: mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 28:d2:44:eb:bd:98 brd ff:ff:ff:ff:ff:ff inet 192.168.0.103/24 brd 192.168.0.255 scope global dynamic enp1s0 valid_lft 5772sec preferred_lft 5772sec inet6 fe80::8f0c:7825:8057:5eec/64 scope link valid_lft forever preferred_lft forever 3: wlp2s0: mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 38:b1:db:7c:78:c7 brd ff:ff:ff:ff:ff:ff ... Чтобы временно назначить IP-адрес определенному сетевому интерфейсу (eth0), введите: $ sudo ip addr add 192.168.56.1 dev eth0 Чтобы удалить назначенный IP-адрес c сетевого интерфейса (eth0), введите: $ sudo ip addr del 192.168.56.15/24 dev eth0 Чтобы показать текущую таблицу соседей в ядре, введите: $ ip neigh 192.168.0.1 dev enp1s0 lladdr 10:fe:ed:3d:f3:82 REACHABLE 3. Команды ifup, ifdown, и ifquery Команда ifup активирует сетевой интерфейс, делая его доступным для передачи и получения данных. $ sudo ifup eth0 Команда ifdow отключает сетевой интерфейс, сохраняя его в состоянии, когда он не может передавать или получать данные. $ sudo ifdown eth0 Команда ifquery используется для анализа конфигурации сетевого интерфейса, что позволяет получать ответы на запросы о том, как он настроен в данный момент. $ sudo ifquery eth0 4. Команда Ethtool ethtool - это утилита запроса и изменения параметров контроллера сетевого интерфейса и драйверов устройств. В приведенном ниже примере показано использование ethtool и команды для просмотра параметров сетевого интерфейса. $ sudo ethtool enp0s3 Settings for enp0s3: Supported ports: [ TP ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full Supported pause frame use: No Supports auto-negotiation: Yes Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full Advertised pause frame use: No Advertised auto-negotiation: Yes Speed: 1000Mb/s Duplex: Full Port: Twisted Pair PHYAD: 0 Transceiver: internal Auto-negotiation: on MDI-X: off (auto) Supports Wake-on: umbg Wake-on: d Current message level: 0x00000007 (7) drv probe link Link detected: yes 5. Команда Ping ping (Packet INternet Groper) – это всеми известная утилита, обычно используемая для тестирования соединения между двумя системами в сети (LAN или WAN). Ping использует протокол ICMP (Internet Control Message Protocol) для связи с узлами в сети. Чтобы проверить подключение к другому узлу, просто укажите его IP или имя хоста, например: $ ping 192.168.0.103 PING 192.168.0.103 (192.168.0.103) 56(84) bytes of data. 64 bytes from 192.168.0.103: icmp_seq=1 ttl=64 time=0.191 ms 64 bytes from 192.168.0.103: icmp_seq=2 ttl=64 time=0.156 ms 64 bytes from 192.168.0.103: icmp_seq=3 ttl=64 time=0.179 ms 64 bytes from 192.168.0.103: icmp_seq=4 ttl=64 time=0.182 ms 64 bytes from 192.168.0.103: icmp_seq=5 ttl=64 time=0.207 ms 64 bytes from 192.168.0.103: icmp_seq=6 ttl=64 time=0.157 ms ^C --- 192.168.0.103 ping statistics --- 6 packets transmitted, 6 received, 0% packet loss, time 5099ms rtt min/avg/max/mdev = 0.156/0.178/0.207/0.023 ms Вы также можете указать ping выходить после указанного количества пакетов ECHO_REQUEST, используя флаг -c, как показано ниже: $ ping -c 4 192.168.0.103 PING 192.168.0.103 (192.168.0.103) 56(84) bytes of data. 64 bytes from 192.168.0.103: icmp_seq=1 ttl=64 time=1.09 ms 64 bytes from 192.168.0.103: icmp_seq=2 ttl=64 time=0.157 ms 64 bytes from 192.168.0.103: icmp_seq=3 ttl=64 time=0.163 ms 64 bytes from 192.168.0.103: icmp_seq=4 ttl=64 time=0.190 ms --- 192.168.0.103 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3029ms rtt min/avg/max/mdev = 0.157/0.402/1.098/0.402 ms 6. Команда Traceroute Traceroute - это утилита командной строки для отслеживания полного пути от вашей локальной системы до другой сетевой системы. Traceroute отображает количество хопов (IP-адресов маршрутизатора) по тому пути, по которому вы идете, чтобы добраться до конечного сервера. Это простая в использовании утилита для устранения неполадок в сети после команды ping. В этом примере мы отслеживаем маршрут, по которому пакеты отправляются из локальной системы на один из серверов Google с IP-адресом 216.58.204.46: $ traceroute 216.58.204.46 traceroute to 216.58.204.46 (216.58.204.46), 30 hops max, 60 byte packets 1 gateway (192.168.0.1) 0.487 ms 0.277 ms 0.269 ms 2 5.5.5.215 (5.5.5.215) 1.846 ms 1.631 ms 1.553 ms 3 * * * 4 72.14.194.226 (72.14.194.226) 3.762 ms 3.683 ms 3.577 ms 5 108.170.248.179 (108.170.248.179) 4.666 ms 108.170.248.162 (108.170.248.162) 4.869 ms 108.170.248.194 (108.170.248.194) 4.245 ms 6 72.14.235.133 (72.14.235.133) 72.443 ms 209.85.241.175 (209.85.241.175) 62.738 ms 72.14.235.133 (72.14.235.133) 65.809 ms 7 66.249.94.140 (66.249.94.140) 128.726 ms 127.506 ms 209.85.248.5 (209.85.248.5) 127.330 ms 8 74.125.251.181 (74.125.251.181) 127.219 ms 108.170.236.124 (108.170.236.124) 212.544 ms 74.125.251.181 (74.125.251.181) 127.249 ms 9 216.239.49.134 (216.239.49.134) 236.906 ms 209.85.242.80 (209.85.242.80) 254.810 ms 254.735 ms 10 209.85.251.138 (209.85.251.138) 252.002 ms 216.239.43.227 (216.239.43.227) 251.975 ms 209.85.242.80 (209.85.242.80) 236.343 ms 11 216.239.43.227 (216.239.43.227) 251.452 ms 72.14.234.8 (72.14.234.8) 279.650 ms 277.492 ms 12 209.85.250.9 (209.85.250.9) 274.521 ms 274.450 ms 209.85.253.249 (209.85.253.249) 270.558 ms 13 209.85.250.9 (209.85.250.9) 269.147 ms 209.85.254.244 (209.85.254.244) 347.046 ms 209.85.250.9 (209.85.250.9) 285.265 ms 14 64.233.175.112 (64.233.175.112) 344.852 ms 216.239.57.236 (216.239.57.236) 343.786 ms 64.233.175.112 (64.233.175.112) 345.273 ms 15 108.170.246.129 (108.170.246.129) 345.054 ms 345.342 ms 64.233.175.112 (64.233.175.112) 343.706 ms 16 108.170.238.119 (108.170.238.119) 345.610 ms 108.170.246.161 (108.170.246.161) 344.726 ms 108.170.238.117 (108.170.238.117) 345.536 ms 17 lhr25s12-in-f46.1e100.net (216.58.204.46) 345.382 ms 345.031 ms 344.884 ms 7. MTR Network Diagnostic Tool MTR - это современный инструмент для диагностики сети из командной строки, который объединяет функции ping и traceroute в одном диагностическом инструменте. Его вывод обновляется в режиме реального времени, по умолчанию, пока вы не выйдете из программы, нажав q. Самый простой способ запустить mtr - указать в качестве аргумента имя хоста или IP-адрес следующим образом: $ mtr google.com ИЛИ $ mtr 216.58.223.78 Пример вывода: wiki.merionet.ru (0.0.0.0) Thu Jul 12 08:58:27 2018 First TTL: 1 Host Loss% Snt Last Avg Best Wrst StDev 1. 192.168.0.1 0.0% 41 0.5 0.6 0.4 1.7 0.2 2. 5.5.5.215 0.0% 40 1.9 1.5 0.8 7.3 1.0 3. 209.snat-111-91-120.hns.net.in 23.1% 40 1.9 2.7 1.7 10.5 1.6 4. 72.14.194.226 0.0% 40 89.1 5.2 2.2 89.1 13.7 5. 108.170.248.193 0.0% 40 3.0 4.1 2.4 52.4 7.8 6. 108.170.237.43 0.0% 40 2.9 5.3 2.5 94.1 14.4 7. bom07s10-in-f174.1e100.net 0.0% 40 2.6 6.7 2.3 79.7 16. Вы можете ограничить количество пингов определенным значением и выйти из mtr после этих пингов, используя флаг -c. $ mtr -c 4 google.com 8. Команда Route route - это утилита для отображения или манипулирования таблицей IP-маршрутизации системы Linux. Route в основном используется для настройки статических маршрутов к конкретным хостам или сетям через интерфейс. Вы можете просмотреть таблицу маршрутизации IP ядра, набрав: $ route Destination Gateway Genmask Flags Metric Ref Use Iface default gateway 0.0.0.0 UG 100 0 0 enp0s3 192.168.0.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s3 192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0 Существует множество команд, которые вы можете использовать для настройки маршрутизации. Вот несколько полезных. Добавить шлюз по умолчанию в таблицу маршрутизации: $ sudo route add default gw Добавить сетевой маршрут в таблицу маршрутизации: $ sudo route add -net gw Удалить конкретную запись маршрута из таблицы маршрутизации: $ sudo route del -net 9. Команда Nmcli Nmcli - это простой в использовании инструмент с поддержкой сценариев, позволяющий сообщать о состоянии сети, управлять сетевыми подключениями и управлять NetworkManager. Чтобы просмотреть все ваши сетевые устройства, введите: $ nmcli dev status DEVICE TYPE STATE CONNECTION virbr0 bridge connected virbr0 enp0s3 ethernet connected Wired connection 1 Чтобы проверить сетевые подключения в вашей системе, введите: $ nmcli con show Wired connection 1 bc3638ff-205a-3bbb-8845-5a4b0f7eef91 802-3-ethernet enp0s3 virbr0 00f5d53e-fd51-41d3-b069-bdfd2dde062b bridge virbr0 Чтобы увидеть только активные соединения, добавьте флаг -a. $ nmcli con show -a Инструменты сетевого сканирования и анализа производительности 10.Команда Netstat netstat - это инструмент командной строки, который отображает полезную информацию, такую как сетевые соединения, таблицы маршрутизации, статистику интерфейса и многое другое, касающееся сетевой подсистемы Linux. Это полезно для устранения неполадок в сети и анализа производительности. Кроме того, это также основной инструмент отладки сетевых служб, используемый для проверки того, какие программы прослушивают какие порты. Например, следующая команда покажет все порты TCP в режиме прослушивания и какие программы прослушивают их. $ sudo netstat -tnlp Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:587 0.0.0.0:* LISTEN 1257/master tcp 0 0 127.0.0.1:5003 0.0.0.0:* LISTEN 1/systemd tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN 1015/dovecot tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN 1015/dovecot tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1/systemd tcp 0 0 0.0.0.0:465 0.0.0.0:* LISTEN 1257/master tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN 1404/pdns_server tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 1064/pure-ftpd (SER tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 972/sshd tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 975/cupsd tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 1257/master tcp 0 0 0.0.0.0:8090 0.0.0.0:* LISTEN 636/lscpd (lscpd - tcp 0 0 0.0.0.0:993 0.0.0.0:* LISTEN 1015/dovecot tcp 0 0 0.0.0.0:995 0.0.0.0:* LISTEN 1015/dovecot tcp6 0 0 :::3306 :::* LISTEN 1053/mysqld tcp6 0 0 :::3307 :::* LISTEN 1211/mysqld tcp6 0 0 :::587 :::* LISTEN 1257/master tcp6 0 0 :::110 :::* LISTEN 1015/dovecot tcp6 0 0 :::143 :::* LISTEN 1015/dovecot tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::80 :::* LISTEN 990/httpd tcp6 0 0 :::465 :::* LISTEN 1257/master tcp6 0 0 :::53 :::* LISTEN 1404/pdns_server tcp6 0 0 :::21 :::* LISTEN 1064/pure-ftpd (SER tcp6 0 0 :::22 :::* LISTEN 972/sshd tcp6 0 0 ::1:631 :::* LISTEN 975/cupsd tcp6 0 0 :::25 :::* LISTEN 1257/master tcp6 0 0 :::993 :::* LISTEN 1015/dovecot tcp6 0 0 :::995 :::* LISTEN 1015/dovecot Чтобы просмотреть таблицу маршрутизации ядра, используйте флаг -r (который эквивалентен приведенной выше команде route). $ netstat -r Destination Gateway Genmask Flags MSS Window irtt Iface default gateway 0.0.0.0 UG 0 0 0 enp0s3 192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 enp0s3 192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0 Внимание: команда Netstat является устаревшей (deprecated) и была заменена командой ss, которую рассмотрим ниже. 11. Команда ss ss (socket statistics - статистика сокетов) - мощная утилита командной строки для изучения сокетов. Он выводит статистику сокетов и отображает информацию, аналогичную netstat. Кроме того, ss показывает больше информации о TCP и состоянии по сравнению с другими подобными утилитами. В следующем примере показано, как составить список всех TCP-портов (сокетов), открытых на сервере. $ ss -ta State Recv-Q Send-Q Local Address:Port Peer Address:Port LISTEN 0 100 *:submission *:* LISTEN 0 128 127.0.0.1:fmpro-internal *:* LISTEN 0 100 *:pop3 *:* LISTEN 0 100 *:imap *:* LISTEN 0 128 *:sunrpc *:* LISTEN 0 100 *:urd *:* LISTEN 0 128 *:domain *:* LISTEN 0 9 *:ftp *:* LISTEN 0 128 *:ssh *:* LISTEN 0 128 127.0.0.1:ipp *:* LISTEN 0 100 *:smtp *:* LISTEN 0 128 *:8090 *:* LISTEN 0 100 *:imaps *:* LISTEN 0 100 *:pop3s *:* ESTAB 0 0 192.168.0.104:ssh 192.168.0.103:36398 ESTAB 0 0 127.0.0.1:34642 127.0.0.1:opsession-prxy ESTAB 0 0 127.0.0.1:34638 127.0.0.1:opsession-prxy ESTAB 0 0 127.0.0.1:34644 127.0.0.1:opsession-prxy ESTAB 0 0 127.0.0.1:34640 127.0.0.1:opsession-prxy LISTEN 0 80 :::mysql :::* ... Чтобы отобразить все активные TCP-соединения вместе с их таймерами, выполните следующую команду. $ ss -to 12. Команда NC NC (NetCat), также называемая «Сетевым швейцарским армейским ножом», является мощной утилитой, используемой почти для любой задачи, связанной с сокетами домена TCP, UDP или UNIX. NC используется для открытия TCP-соединений, прослушивания произвольных портов TCP и UDP, выполнения сканирования портов и многого другого. Вы также можете использовать его в качестве простых прокси-серверов TCP для тестирования сетевых демонов, проверки доступности удаленных портов и многого другого. Кроме того, вы можете использовать nc вместе с командой pv для передачи файлов между двумя компьютерами. В следующем примере будет показано, как сканировать список портов. $ nc -zv server2.merionet.lan 21 22 80 443 3000 Вы также можете указать диапазон портов. $ nc -zv server2.merionet.lan 20-90 В следующем примере показано, как использовать nc для открытия TCP-соединения с портом 5000 на server2.merionet.lan, используя порт 3000 в качестве порта источника с тайм-аутом 10 секунд. $ nc -p 3000 -w 10 server2.merionet.lan 5000 13.Команда Nmap Nmap (Network Mapper) - это мощный и чрезвычайно универсальный инструмент для системных и сетевых администраторов Linux. Он используется для сбора информации об одном хосте или для изучения сетей по всей сети. Nmap также используется для сканирования безопасности, аудита сети, поиска открытых портов на удаленных хостах и многого другого. Например, вы можете сканировать хост, используя его имя или IP-адрес. $ nmap google.com Starting Nmap 6.40 ( http://nmap.org ) at 2018-07-12 09:23 BST Nmap scan report for google.com (172.217.166.78) Host is up (0.0036s latency). rDNS record for 172.217.166.78: bom05s15-in-f14.1e100.net Not shown: 998 filtered ports PORT STATE SERVICE 80/tcp open http 443/tcp open https Nmap done: 1 IP address (1 host up) scanned in 4.92 seconds В качестве альтернативы можно использовать IP-адрес. $ nmap 192.168.0.103 Starting Nmap 6.40 ( http://nmap.org ) at 2018-07-12 09:24 BST Nmap scan report for 192.168.0.103 Host is up (0.000051s latency). Not shown: 994 closed ports PORT STATE SERVICE 22/tcp open ssh 25/tcp open smtp 902/tcp open iss-realsecure 4242/tcp open vrml-multi-use 5900/tcp open vnc 8080/tcp open http-proxy MAC Address: 28:D2:44:EB:BD:98 (Lcfc(hefei) Electronics Technology Co.) Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds Утилиты DNS Lookup 14. Команда host Команда hos - это простая утилита для DNS Lookup, она переводит имена хостов в IP-адреса и наоборот. $ host google.com google.com has address 172.217.166.78 google.com mail is handled by 20 alt1.aspmx.l.google.com. google.com mail is handled by 30 alt2.aspmx.l.google.com. google.com mail is handled by 40 alt3.aspmx.l.google.com. google.com mail is handled by 50 alt4.aspmx.l.google.com. google.com mail is handled by 10 aspmx.l.google.com. 15. Команда dig dig (domain information groper - сборщик информации о домене) - это еще одна простая утилита DNS Lookup, которая используется для запроса информации, связанной с DNS, такой как A Record, CNAME, MX Record и т. д., например: $ dig google.com ; DiG 9.9.4-RedHat-9.9.4-51.el7 google.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER merionet.com.ssh: Flags [.], ack 196, win 5202, options [nop,nop,TS val 2019058 ecr 2211778668], length 0 09:35:40.288269 IP merionet.com.54899 > gateway.domain: 43760+ PTR? 103.0.168.192.in-addr.arpa. (44) 09:35:40.333763 IP gateway.domain > merionet.com.54899: 43760 NXDomain* 0/1/0 (94) 09:35:40.335311 IP merionet.com.52036 > gateway.domain: 44289+ PTR? 1.0.168.192.in-addr.arpa. (42) Чтобы захватить определенное количество пакетов, используйте параметр -c, чтобы ввести желаемое число. $ tcpdump -c 5 -i eth1 Вы также можете захватывать и сохранять пакеты в файл для последующего анализа, используйте флаг -w, чтобы указать выходной файл. $ tcpdump -w captured.pacs -i eth1 18. Утилита Wireshark Wireshark - это популярный, мощный, универсальный и простой в использовании инструмент для захвата и анализа пакетов в сети с коммутацией пакетов в режиме реального времени. Вы также можете сохранить полученные данные в файл для последующей проверки. Он используется системными администраторами и сетевыми инженерами для мониторинга и проверки пакетов в целях безопасности и устранения неполадок. 19.Утилита Bmon bmon - мощная утилита для мониторинга и отладки сети, основанная на командной строке, для Unix-подобных систем, она собирает статистику, связанную с сетью, и печатает ее визуально в удобном для человека формате. Это надежный и эффективный монитор полосы пропускания в реальном времени и оценщик скорости. Инструменты управления фаерволом Linux 20. Iptables iptables - это инструмент командной строки для настройки, поддержки и проверки таблиц фильтрации IP-пакетов и набора правил NAT. Он используется для настройки и управления брандмауэром Linux (Netfilter). Это позволяет вам перечислить существующие правила фильтрации пакетов; добавлять или удалять или изменять правила фильтрации пакетов; список счетчиков для правил правил фильтрации пакетов. Вы можете узнать, как использовать Iptables для различных целей из нашей статьи 21. Firewalld Firewalld - это мощный и динамичный демон управления брандмауэром Linux (Netfilter), как и iptables. Он использует «сетевые зоны» вместо INPUT, OUTPUT и FORWARD CHAINS в iptables. В современных дистрибутивах Linux, таких как RHEL, CentOS 7 и Fedora 21+, iptables активно заменяется firewalld. Важно: Iptables по-прежнему поддерживается и может быть установлен с помощью менеджера пакетов YUM. Однако вы не можете использовать Firewalld и iptables одновременно на одном сервере - вы должны выбрать один. 22. UFW (Uncomplicated Firewall) UFW - это широко известный и используемый по умолчанию инструмент настройки брандмауэра в дистрибутивах Debian и Ubuntu Linux. Он используется для включения и отключения системного брандмауэра, добавления, удаления, изменения, сброса правил фильтрации пакетов и многого другого. Чтобы проверить состояние брандмауэра UFW, введите: $ sudo ufw status Если брандмауэр UFW не активен, вы можете активировать или включить его с помощью следующей команды. $ sudo ufw enable Чтобы отключить брандмауэр UFW, используйте следующую команду. $ sudo ufw disable На этом пока все! В этом руководстве мы рассмотрели некоторые из наиболее часто используемых инструментов и утилит командной строки для управления сетью в Linux, в разных категориях, для системных администраторов и сетевых администраторов и инженеров. Вы можете поделиться своими мыслями об этом руководстве с помощью комментариев. Если мы пропустили какие-либо часто используемые и важные сетевые инструменты и утилиты Linux или любую полезную связанную информацию, также сообщите нам об этом.
img
Нет времени на приветствия, конфиги горят! Для создания стандартного листа контроля доступа на оборудовании Cisco, нужно зайти в глобальный режим конфигурации и набрать команду: R1(config)# access-list ACL_NUMBER permit|deny IP_ADDRESS WILDCARD_MASK Где: ACL_NUMBER - номер листа, стандартные листы именуются в промежутке 1-99 и 1300-1999; permit/deny - разрешаем или запрещаем; IP_ADDRESS/HOST - сетевой адрес; WILDCARD_MASK - обратная маска; Не нужно напрягаться и считать wildcard (обратную) маску в голове. Воспользуйся нашим калькулятором подсетей: Калькулятор подсетей Как только мы создали лист контроля доступа, его нужно применить к интерфейсу. Пуляем команду: ip access-group ACL_NUMBER in|out interdace Синтаксис команды описан ниже: ACL_NUMBER - номер листа контроля доступа; in|out - покидает трафик (out) или входит на интерфейс (in); interface - номер и тип интерфейса; Пример настройки В топологии указанной ниже, нам нужно разрешить трафик из управляющей подсети на сервер S1. Для начала, напишем ACL и разрешим трафик из подсети 10.0.0.0/24 к серверу S1. Сделаем это мы следующей командой: access-list 1 permit 10.0.0.0 0.0.0.255 Данная команда разрешает весь трафик из подсети 10.0.0, также мы можем указать конкретный хост – тогда трафик будет разрешен только с него: access-list 1 permit host 10.0.0.1 В конце каждого листа есть скрытая команда deny all – это означает, что трафик из других подсетей будет по умолчанию блокироваться. Если подобный эффект вам не нужен – можно создать лист: access list 2 permit any any
img
Зачем нужно шифрование и насколько оно важно? Функционирование любых цифровых сервисов невозможно без защиты данных. Еще совсем немного времени назад эта проблема не стояла так остро, так в основной массе устройств использовались относительно защищенные каналы связи. Типичный пример - телефонный кабель между персональным компьютером и провайдером. Даже, если по нему передаются незашифрованные данные, то их похитить затруднительно из-за объективных сложностей физического доступа к телефонной линии, особенно когда она проложена под землей, как это делается в городах. Теперь же, когда все, включая даже финансовые переводы, делается с мобильных устройств, ни о какой защите канала связи не может быть и речи, причем, так как радиоэфир доступен каждому. Значительное количество Wi-Fi карт довольно просто переводятся в режим мониторинга и могут принимать данные, передаваемые другими устройствами. Выход из этой ситуации заключается в использовании совершенных алгоритмов шифрования. Причем к этому решения одновременно пришли многие IT-разработчики в мире. Совершенно определенно, что алгоритмы шифрования должны быть стандартными, принятыми во всех странах мира, так как интернет глобален. При несоблюдении этого правила, то, что передается одним сервером, уже не может быть принято другим, так как алгоритм шифрования не известен. Итак, теперь понятно, что без общепринятых, сертифицированных и надежных алгоритмов шифрования не обойтись. Алгоритм 3DES или Triple DES Самый первый, принятый для использования в сети интернет алгоритм шифрования. 3DES разработан Мартином Хеллманом в 1978 году. Учитывая уже почетный возраст для IT-технологий, по оценкам НИСТ (Национальный Институт Стандартов и Технологий) он останется надежным до 2030-х годов. Несмотря на достаточное количество более современных и значительно более криптостойких алгоритмов, банковские системы продолжают использовать именно старый добрый 3DES, что косвенно говорит о его высокой надежности. Также он активно используется в сети интернет во всем мире. Рассмотрим его работу подробнее. Ну, а самое интересное - почти все более современные алгоритмы шифрования представляют собой доработанный DES. Даже утвержден неформальный термин, как "DES-подобные криптографические системы". В 1977 совместными усилиями многих разработчиков из компании IBM создается алгоритм DES (Data Encryption Standard, "Данные Шифрования Стандарт"), который утверждается правительством США. Всего через год на его основе появится доработанный вариант - 3DES, который предложит Мартин Хеллман и он тоже будет утвержден, как улучшенная версия. DES работает на так называемой сети Фейстеля. Это ни что не иное, как модульные вычисления - многократно повторяемая простая вычислительная операция на нескольких логических ячейках. Именно с этого конца смотрят хакеры, когда для подбора ключей используются майнинг-фермы на процессорах с тысячами ядер CUDA (в видеокартах). Так какие же вычисления выполняет "взломщик"? Ответ - разложение на простые множители или факторизацию с некоторыми дополнительными операциями. Для числа из трех знаков, разложение на простые множители займет несколько минут ручного пересчета, или миллисекунды работы компьютера. Пример - число 589, для которого ключ будет равен 19*31=589. На самом деле, алгоритмы шифрования работают очень просто. Попробуем методом факторизации, известным очень давно, скрыть ключ. Пусть ключом у нас будет число длиной 30 знаков (при работе с байтами и битами это могут быть и буквы). Добавим к нему еще одно число такой же (или отличающейся, это неважно) длины и перемножим их друг на друга: 852093601- 764194923 - 444097653875 х 783675281 - 873982111 - 733391653231 = 667764693545572117833209455404487475025224088909394663420125 Нам сейчас важно то, что на это перемножение мы затратили ничтожную вычислительную мощность. С таким простым умножением можно справиться даже без калькулятора, затратив несколько часов времени. Калькулятор, а там более мощный компьютер сделает это за тысячную долю секунды. Если же мы поставим обратную задачу - восстановить исходные множители, то на это даже на мощном компьютере уйдут годы, и это время будет увеличиваться квадратично по мере прибавления знаков в исходных числах. Таким образом, мы получили одностороннюю функцию, являющуюся базовой для всех распространенных алгоритмов шифрования. Именно на односторонних функциях (хеширование) построен DES, 3DES и последующие (AES) способы защиты информации. Перейдем к их более подробному рассмотрению. Алгоритм AES На данный момент времени самый распространенный алгоритм шифрования в мире. Название расшифровывается, как Advanced Encryption Standard (расширенный стандарт шифрования). AES утвержден национальным институтом технологий и стандартов США в 2001 году и в активном применении находится до сих пор. Максимальная длина шифроключа - 256 бит, что означает, что пароль может иметь до 32 символов из таблицы на 256 значений (кириллица, латиница, знаки препинания и другим символы). Это достаточно надежно даже для современного мира с мощными компьютерными мощностями для перебора (брутфорса). В 16-ричной системе счисления AES может иметь и более длинные ключи, но криптостойкость их точно такая же, ибо конечное число всех возможных вариантов идентичное, вне зависимости от системы счисления. Специалисты не раз отмечали, что в отличие от других шифров AES имеет простое математическое описание, но такие высказывания подвергались критике и опровергались математиками с указаниями ошибок в уравнениях. Тем не менее, Агентство Национальной Безопасности США рекомендует AES для защиты самых важных сведений, составляющих государственную тайну, а это тоже отличный показатель надежности. Ниже приведена блок-схема шифрования AES. Отметим, что разработка алгоритмов шифрования дело не столь сложное, как кажется на первый взгляд. Например, по заверению многих студентов при прохождении предмета "основы криптографии" они разрабатывали собственные "несложные" алгоритмы, наподобие DES. Кстати, все тот же DES имеет множество "клонов" с небольшими нововведениями разработчиков в России и других странах. Российские алгоритмы шифрования Одним из первых шифров, который утверждался официально, стал принятый в 1990 году ГОСТ 28147-89, разработанный на все той же сети Фейстеля. Конечно, алгоритм был разработан почти на целое поколение раньше, и использовался в КГБ СССР, просто необходимость его обнародования возникла только в эпоху цифровых данных. Официально открытым шифр стал только в 1994 году. Шифр "Калина" (тот же ГОСТ 28147-89 для России и ДСТУ ГОСТ 28147:2009 для Украины) будет действовать до 2022 года. За этот период он постепенно будет замещен более современными системами шифрования, такими, как "Магма" и "Кузнечик", поэтому для более подробного обзора в этой статье интересны именно они. "Магма" и "Кузнечик" стандартизованы ГОСТ 34.12-2018. Один документ описывает сразу оба стандарта. "Кузнечик" шифрует любые данные блоками по 128 бит, "Магма" - 64 бита. При этом в "Кузнечике" кусок данных в 128 бит шифруется ключом по 256 бит (34 байта, или пароль в 32 знака с выбором из 256 символов). Миллионы блоков данных шифруются одним ключом, поэтому его не нужно передавать с каждым сообщением заново. То, что ключ занимает больший объем, чем данные, никак не сказывается на работе алгоритма, а только дополнительно придает ему надежности. Конечно, "Кузнечик" разработан не для тех систем, где на счету каждый килобайт, как например, в узкополосной радиосвязи. Он оптимально подходит для применения в IT-сфере. Описание математического аппарата "Кузнечика" - тема отдельной статьи, которая будет понятна лишь людям хотя бы с начальным знанием математики, поэтому мы этого делать не будем. Отметим лишь некоторые особенности: Фиксированная таблица чисел для нелинейного преобразования (приведена в ГОСТ 34.12-2018). Фиксированная таблица для обратного нелинейного преобразования (также приведена в ГОСТ 34.12-2018). Многорежимность алгоритма для способов разбивания шифруемого потока данных на блоки: режим имитовставки, гаммирования, режим простой замены, замены с зацеплением, гаммирования с обратной связью. Помимо шифрования данных "Кузнечик" и "Магма" могут быть использованы для генерации ключей. Кстати, именно в этом была обнаружена их уязвимость. Так, на конференции CRYPTO 2015 группа специалистов заявила, что методом обратного проектирования им удалось раскрыть алгоритм генерации ключей, следовательно, они не являются случайной последовательностью, а вполне предсказуемы. Тем не менее, "Кузнечик" вполне может использоваться для ручного ввода ключа, а это полностью нивелирует данную уязвимость. Большое преимущество алгоритма "Кузнечик" - он может применяться без операционной системы и компьютера. Необходимы лишь маломощные микроконтроллеры. Этот способ описан в журнале Радиопромышленность том 28 №3. По той же технологии возможна разработка прошивок контроллеров и под другие алгоритмы шифрования. Такое решение под силу реализовать на аппаратной основе (микросхемы) даже в любительских условиях. Любительские разработки В конспирологических кругах распространено мнение об уязвимости стандартных алгоритмов шифрования, хотя они давно уже описаны математически и легко проверяются. Есть даже способ "майним биткоины на бумаге", то есть, используя карандаш и лист бумаги, давно было показано, как предварительно переведя данные в шестнадцатиричную систему, их зашифровать и расшифровать стандартным алгоритмом SHA-256, подробно изъяснив каждый момент на пальцах. Тем не менее, находятся люди, желающие разработать свой собственный алгоритм шифрования. Многие из них - студенты, изучающие криптографию. Рассмотрим некоторые интересные способы реализации таких шифров и передачи ключей. Использование картинки для составления ключа и передачи данных. Способ часто применяется для передачи небольших блоков, например ключей. Изменения (растр, фиксируемой программой шифрации/дешифрации) не должны быть заметны простому зрителю. Использование видео. Собственно, это вариант первого способа. Просто, в отличие от картинки, в видео можно зашифровать уже более значительный трафик, например, голосовой обмен в реальном времени. При этом требуется высокое разрешение картинки, что для современных мультимедийных устройств - не проблема. Встраивание данных в аудио. Разработано множество программных продуктов для решения данной задачи, получены соответствующие патенты, например, "Патент США 10,089,994" на "Аудио водяные знаки". Простые шифры замены на основе словарей, например, Библии, или менее известной литературы. Способ шифрования хорошо знаком по шпионским фильмам и наиболее прост для любительского применения. Динамичные ключи, автоматически изменяемые по параметрам устройства. Например, отслеживается 100 параметров ПК (объем диска, температура процессора, дата и время) и на их основе программа автоматически генерирует ключ. Способ очень удобен для автомобильных сигнализаций, считывающих все параметры по шине CAN. Способов шифровать данные огромное множество и все их можно разделить на шифр замены и шифр перестановки, а также комбинацию этих обоих способов. Алгоритмы шифрования и криптовалюты Совершенствование алгоритмов шифрования стало одним из основных факторов возникновения всемирного бума криптовалют. Сейчас уже очевидно, что технология блокчейн (в основе нее лежат все те же алгоритмы шифрования) будет иметь очень широкое применение в будущем. Для выработки криптовалют (майнинга) используются разнообразные компьютерные мощности, которые могут быть использованы для взлома различных алгоритмов шифрования. Именно поэтому в криптовалютах второго и последующих поколений эту уязвимость постепенно закрывают. Так Биткоин (криптовалюта первого поколения) использует для майнинига брутфорс SHA-256 и майнинг-ферма с небольшой перенастройкой может быть использована для взлома данного алгоритма. Эфириум, уже имеет свой собственный алгоритм шифрования, но у него другая особенность. Если для биткоина используются узкоспециализированные интегральные микросхемы (асики), неспособные выполнять никаких других операций, кроме перебора хешей в SHA-256, то эфириум "майнится" уже на универсальных процессорах с CUDA-ядрами. Не забываем, что криптовалюты только начали свое шествие по миру и в недалеком будущем эти недостатки будут устранены. Плата ASIC-майнера содержит одинаковые ячейки со специализированными процессорами для перебора строк по алгоритму шифрования SHA-256 Алгоритмы шифрования и квантовый компьютер Сделав обзор по современным алгоритмам шифрования, нельзя не упомянуть такую тему, как квантовый компьютер. Дело в том, что его создатели то и дело упоминают о "конце всей криптографии", как только квантовый компьютер заработает. Это было бы недостойно обсуждения в технических кругах, но такие заявления поступают от гигантов мировой индустрии, например транснациональной корпорации Google. Квантовый компьютер обещает иметь чрезвычайно высокую производительность, которая сделает бесполезной криптографию, так как любое шифрование будет раскрываться методом брутфорса. Учитывая, что на шифровании, в некотором смысле, стоит современный мир, например финансовая система, государства, корпорации, то изобретение квантового компьютера изменит мир почти также, как изобретение вечного двигателя, ибо у человечества уже не будет основного способа скрывать информацию. Пока, что, заявления о работающей модели квантового компьютера оставим для обсуждения учеными. Очевидно, что до работающей модели еще очень далеко, так, что криптографические алгоритмы продолжат нести свою службу по защите информации во всем мире.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59