По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для захвата трафика можно использовать маршрутизаторы Cisco, при помощи утилиты Cisco Embedded Packet Capture, которая доступна, начиная с версии IOS 12.4.20T. В этой статье мы расскажем, как настроить EPC для захвата пакетов на роутере, сохранять их на flash памяти или экспортировать на ftp/tftp сервер для будущего анализа, при помощи анализатора пакетов, например, такого как Wireshark. Давайте рассмотрим некоторые из основных функций, которые предлагает нам Embedded Packet Capture: Экспорт пакетов в формате PCAP, обеспечивающий анализ с помощью внешних инструментов Возможность задать различные параметры буфера захвата Отображение буфера захвата Захват IPv4 и IPv6 пакетов в пути Cisco Express Forwarding Прежде чем начать конфигурацию Cisco EPC необходимо разобраться с двумя терминами, которые будут использоваться в процессе – Capture Buffer(буфер захвата) и Capture Point (точка захвата) Capture buffer – это зона в памяти для хранения пакетных данных. Существует два типа буферов захвата Linear (линейный) и Circular (кольцевой): Linear Capture Buffer – когда буфер захвата заполнен, он перестает захватывать данные Circular Capture Buffer – когда буфер заполнен, он продолжает захватывать данные, перезаписывая старые данные Capture Point – это точка транзита трафика, в которой фиксируется пакет. Тут определяется следующее: IPv4 или IPv6 CEF (Cisco Express Forwarding) или Process-Switched Интерфейс (например Fast Ethernet 0/0, Gigabit Ethernet 1/0) Направление трафика: входящий (in), исходящий (out) или оба Настройка Cisco Embedded Packet Capture Рассмотрим настройку на примере нашей схемы, где мы хотим захватить входящие и исходящие пакеты на интерфейсе FastEthernet 0/0 от ПК с адресом 192.168.1.5 до веб-сервера wiki.merionet.ru с адресом 212.193.249.136 Первым делом мы создадим буфер, который будет хранить захваченные пакеты. Для этого используем команду monitor capture buffer [имя] size[размер] [тип] . Создадим буфер merionet_cap, размером 1024 килобайта (1 мегабайт, стандартный размер) и сделаем его линейным. Router#monitor capture buffer merionet_cap size 1024 linear Далее мы можем настроить захват определенного трафика. В нашем случае нужно захватить трафик между 192.168.1.5 и 212.193.249.136. Это достигается при помощи списков контроля доступа ACL. Мы можем использовать стандартные или расширенные списки доступа в зависимости от требуемой детализации. Если список доступа не настроен, то захвачен будет весь трафик. Router(config)#ip access-list extended web-traffic Router(config-ext-nacl)#permit ip host 192.168.1.5 host 212.193.249.136 Router(config-ext-nacl)#permit ip host 212.192.249.136 host 192.168.1.5 Наш список доступа включает трафик, исходящий от обоих хостов, потому что мы хотим захватить двунаправленный трафик. Если бы мы включили только один оператор ACL, тогда был бы зафиксирован только односторонний трафик. Теперь свяжем наш буфер с access-list’ом, при помощи команды monitor capture buffer [название_буфера] filter access-list [название_ACL] Router#monitor capture buffer merionet_cap filter access-list web-traffic Затем следующем шагом мы определяем, какой интерфейс будет точкой захвата. В нашем случае это FastEthernet 0/0, и мы будем захватывать как входящие, так и исходящие пакеты. Во время этой фазы конфигурации нам нужно предоставить имя для точки захвата. Также очень важно ввести команду ip cef для обеспечения минимального влияния на процессор маршрутизатора, при помощи Cisco Express Forwarding. Если ip cef не включен, то появится сообщение IPv4 CEF is not enabled. Используем команду monitor capture point ip cef [имя_точки] [интерфейс] [направление] . Router#monitor capture point ip cef MNpoint FastEthernet0/0 both Теперь мы связываем сконфигурированную точку захвата с буфером захвата командой monitor capture point associate [название_точки][название_буфера] . На этом этапе мы готовы начать сбор пакетов. Router#monitor capture point associate MNpoint merionet_cap Чтобы начать сбор пакетов используем команду monitor capture point start [название_интерфейса] . Router# monitor capture point start MNpoint Чтобы остановить процесс захвата используется команда monitor capture point stop [название_интерфейса] . Router# monitor capture point stop MNpoint Полезные команды проверки: show monitor capture buffer – показывает состояние буфера захвата show monitor capture point – показывает состояние точки захвата show monitor capture buffer [название_буфера] – показывает информацию о захваченных пакетах show monitor capture buffer [название_буфера] dump – показывает содержание буфера Экспорт данных В большинстве случаев захваченные данные необходимо будет экспортировать в сетевой анализатор трафика (например, WireShark) для дополнительного анализа в удобном для пользователя интерфейсе. Захваченный буфер можно экспортировать в несколько местоположений, включая: flash: (на маршрутизаторе), ftp, tftp, http, https, scp и другие. Для экспорта буфера используется команда monitor capture buffer[имя_буфера] export [адрес] . Router#monitor capture buffer merionet_cap export tftp://192.168.1.10/capture.pcap После этого файл capture.pcap появится на нашем TFTP сервере, и мы можем открыть его в сетевом анализаторе.
img
Использование REST API является полезной функцией для реализации ваших сценариев. Вы можете получить доступ к новым функциям, а также расширить возможности создания новых, более продвинутых сценариев. Опыт многих пользователей показывает, что, когда начинаешь использовать REST API в скриптах, то чувствуешь себя довольно неуклюже и непривычно. В этой заметке мы обсудим: Что такое REST API Как читать документацию Как использовать API REST с PowerShell Некоторые советы и подсказки, как облегчить и улучшить практику Что такое "REST"? REST, или RESTful API, это API, который использует HTTP запросы для получения, добавления, удаления или манипулирования данными в различных сервисах. Как правило, то, что нужно сделать с данными, решается тем, какой HTTP-метод вы используете. Вот краткий список методов HTTP и их применение в REST API: GET-Read POST-Create PATCH-Partial update/modify PUT-Update/replace DELETE-Remove Данные, которые возвращает API REST, обычно представляются в формате JSON. Теперь давайте начнём с нашего первого API запроса! Что такое API Работа с документацией Для использования различных API REST необходимо научиться читать и интерпретировать документацию. К счастью, если вы знаете, как читать один тип документации, вы сможете быстро научиться читать другие. В этой статье мы используем petstore.swagger.io, так как он использует популярный фреймворк Swagger, который довольно часто используется в разработке. На предыдущем рисунке показана наиболее важная информация о конечных точках REST API: HTTP-метод-GET/POST/DELETE и т.д. URL-адрес, связанный с конечной точкой REST API (Базовый URL, как правило, представлен в верхней части страницы документации) Краткое описание Подробности Первая страница документации просто замечательная, и, как правило, с помощью этой информации можно выполнить большинство запросов, требующих использования метода HTTP GET. Но такие методы, как POST и SET, обычно требуют, чтобы вы щелкнули и развернули строку, чтобы получить больше информации. Если вы нажмете на одну из строк, то получите информацию, которая выглядит так: Здесь мы представили конечную точку REST, которая может создать новый объект pet. Здесь указывается, как должен выглядеть JSON, предоставленный в теле POST, и какой тип контента он принимает. Другие конечные точки REST указывают, что это за параметры, каким типом данных они должны быть и т.д. Это основы для чтения документации. Теперь, когда общие принцип более-менее ясны, пора начать использовать REST API с PowerShell. Получение первых данных (GET) Используя REST API с PowerShell обычно довольно просто, используется встроенные командлеты, таким образом, нет необходимости в дополнительных модулях. Мы собираемся извлечь данные с помощью метода GET в конечной точке /pet/{ petId}. Если развернуть конечную точку /pet/{ petId} в документации, можно увидеть, что {petId} на самом деле является параметром, который принимает целое число. Это делает URL-адрес для выборки объекта pet с идентификатором 1: https://petstore.swagger.io/v2/pet/1 В документации SWAGGER REST API обычно отображается базовый URL-адрес в верхней части страницы. Теперь начнем с PowerShell. Откройте окно терминала и введите: PS51 > Invoke-RestMethod -Method GET -ContentType "application/json" -Uri "https://petstore.swagger.io/v2/pet/1" id : 1 category : @{id=0; name=string} name : doggie photoUrls : {string} tags : {@{id=0; name=string}} status : available Поскольку в ответе от сервера возвращается тип содержимого "application/json" используется метод Invoke-RestMethod, который автоматически преобразует возвращаемый JSON в объект. Ошибка 404 Not found, как правило, означает, что объект не найден или URL-адрес введен неправильно. Итак, мы выполнили первый вызов REST API. Но возможности метода GET для получения данных довольно ограничены, так что давайте создадим что-нибудь с помощью метода POST. Создание объекта методом POST Метод POST чаще всего используется для создания, например, пользователей или записей и т.д. Запрос POST отправляет BODY, содержащий информацию, конечной точке REST, обычно в формате JSON, но он также может быть в виде формы с кодировкой URL. Вы узнаете, как создать объект JSON, который можно отправить в конечную точку/pet. Можно увидеть, как должен выглядеть JSON, если развернуть строку POST/pet в документации. Начнем с создания хэштаблицы, который можно преобразовать в объект JSON. Raw JSON следует избегать в скриптах PowerShell, поскольку он ограничивает его возможности. $Body = @{ id = 19 category = @{ id = 45 name = "Whatever" } name = "Dawg" photoUrls = @( "string" ) tags = @( @{ id = 0 name = "string" } ) status = "available" } Если вам трудно создать хештаблицу, который преобразуется в нужный JSON, установите модуль PsdKit и используйте команду $ JsonString | ThreadTo-Psd Теперь имеется хэш-таблица, которую можно преобразовать в строку JSON и POST в конечную точку/pet: $JsonBody = $Body | ConvertTo-Json $Uri = "https://petstore.swagger.io/v2/pet" Invoke-RestMethod -ContentType "application/json" -Uri $Uri -Method Post -Body $JsonBody id : 19 category : @{id=45; name=Whatever} name : Dawg photoUrls : {string} tags : {@{id=0; name=string}} status : available При создании объекта он обычно получает созданный для подтверждения объект. Использование DELETE. Метод DELETE используется для удаления данных, а применение очень схоже с методом GET. PS51 > Invoke-RestMethod -Method DELETE -ContentType "application/json" -Uri "https://petstore.swagger.io/v2/pet/1" Только убедитесь, что не удалите ничего важного Использование PUT Метод PUT используется для обновления данных. Это делается аналогично методу POST путем представления полного или частичного объекта JSON: PS51> $Body = [PSCustomObject]@{ id = 19 name = "Dawg with a new name" } PS51> $JsonBody = $Body | ConvertTo-Json PS51> $Uri = "https://petstore.swagger.io/v2/pet" PS51> Invoke-RestMethod -ContentType "application/json" -Uri $Uri -Method PUT -Body $JsonBody id name photoUrls tags -- ---- --------- ---- 19 Dawg with a new name {} {} Обычно API REST возвращает объект JSON с использованными и/или обновленными данными. Можно увидеть, что объект был обновлен с помощью метода GET: PS 51> Invoke-RestMethod -ContentType "application/json" -Uri "https://petstore.swagger.io/v2/pet/19" id : 19 category : @{id=45; name=Whatever} name : Dawg with a new name photoUrls : {string} tags : {@{id=0; name=string}} status : available Создание функций Писать эти команды каждый раз вручную может стать довольно утомительным и на самом деле не масштабируемым. Если мы вызываем конечную точку несколько раз, то лучше создать для нее функцию. Это довольно просто и нужно написать всего несколько строк: Function Get-PetstorePet { [cmdletbinding()] param( # Id of the pet [Parameter(Mandatory,ValueFromPipeline)] [int]$Id ) Begin{} Process{ $RestMethodParams = @{ Uri = "https://petstore.swagger.io/v2/pet/$Id" ContentType = "application/json" Method = "GET" } Invoke-RestMethod @RestMethodParams } End{} } После создания функции ее можно вызвать в сценарии: PS51> Get-PetstorePet -Id 1 id name photoUrls tags -- ---- --------- ---- 1 Doggie {http://picture.url} {} Это можно сделать и для метода POST для создания нового объекта pet в Petstore: Function Add-PetstorePet { [cmdletbinding()] param( # Id of the pet [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [int]$Id, # Name of the pet [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [string]$Name, # Status of the pet (available, sold etc) [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [string]$Status, # Id of the pet category [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [int]$CategoryId, # Name of the pet category [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [string]$CategoryName, # URLs to photos of the pet [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [string[]]$PhotoUrls, # Tags of the pets as hashtable array: @{Id=1;Name="Dog"} [Parameter(Mandatory,ValueFromPipelineByPropertyName)] [Hashtable[]]$Tags ) Begin{} Process{ $Body = @{ id = $Id category = @{ id = $CategoryId name = $CategoryName } name = $Name photoUrls = $PhotoUrls tags = $Tags status = $Status } $BodyJson = $Body | ConvertTo-Json $RestMethodParams = @{ Uri = "https://petstore.swagger.io/v2/pet/" ContentType = "application/json" Method = "Post" Body = $BodyJson } Invoke-RestMethod @RestMethodParams } End{} } И вызов этой функции PowerShell намного упрощает задачу: PS51> $AddPetStorePetsParams = @{ Id = 44 Name = "Birdie" Status = "available" CategoryId = 50 CategoryName = "Hawks" PhotoUrls = "https://images.contoso.com/hawk.jpg" Tags = @( @{ Id=10 Name="Not eagles" } ) } PS51> Add-PetStorePet @AddPetStorePetsParams id : 44 category : @{id=50; name=Hawks} name : Birdie photoUrls : {https://images.domain.com/hawk.jpg} tags : {@{id=0}} status : available Возможно, что многие модули, которые вы ежедневно используете, состоят из функций, который за кулисами используют REST API. Заключение Обучение работы с REST API, главным образом основано на чтении документации. Мы использовали документацию на основе SWAGGER в этом посте, так как она представляет, как могут выглядеть другие стили документации. Кроме того, преобразование вызовов API в функцию может сэкономить много времени, упростить работу и очистить сценарии.
img
Возможно, вы уже слышали о термине "wirespeed" раньше. Это то, что отдел маркетинга любит использовать, когда речь заходит о продаже сетевого оборудования. Это означает, что пакеты могут быть переданы без какой-либо заметной задержки. Кстати, для остальной части этой статьи слова "многоуровневый коммутатор" и "маршрутизатор" - это одно и то же. Все, что я объясняю о многоуровневых коммутаторах отныне, также относится и к маршрутизаторам. Давайте посмотрим на разницу между коммутаторами 2уровня и многоуровневыми коммутаторами с точки зрения коммутации: Вы знаете, что коммутаторы 2 уровня будут переключать только кадры Ethernet в пределах VLAN, и, если мы хотим, мы можем фильтровать трафик на основе уровня 2 (например, с защитой портов). Многоуровневый коммутатор может делать то же самое, но он также способен маршрутизировать между VLAN и фильтровать на уровне 3 или 4 с помощью списков доступа. Переадресация на уровне 2 основана на конечном MAC-адресе. Наш коммутатор изучает исходные MAC-адреса на входящих кадрах и строит таблицу MAC-адресов. Всякий раз, когда фрейм Ethernet входит в один из наших интерфейсов, мы проверяем таблицу MAC-адресов, чтобы найти конечный MAC-адрес, и отправляем его в правильный интерфейс. Переадресация на уровне 3 основана на IP-адресе назначения. Переадресация происходит, когда коммутатор получает IP-пакет, где исходный IP-адрес находится в другой подсети, чем конечный IP-адрес. Когда наш многоуровневый коммутатор получает IP пакет со своим собственным MAC адресом в качестве назначения в заголовке Ethernet есть две возможности: Если конечный IP-адрес является адресом, настроенным многоуровневом коммутаторе, то IP-пакет был предназначен для этого коммутатора. Если конечный IP-адрес - это адрес, который не настроен на многоуровневом коммутаторе, то мы должны действовать как шлюз и "маршрутизировать" пакет. Это означает, что нам придется сделать поиск в таблице маршрутизации, чтобы проверить наличие самого полного совпадения. Кроме того, мы должны проверить, разрешен ли IP-пакет, если вы настроили ACL. В те не далекие времена коммутация производилась на аппаратной скорости, а маршрутизация-на программной. В настоящее время как коммутация, так и маршрутизация выполняются на аппаратной скорости. В оставшейся части этой статьи вы узнаете почему. Давайте рассмотрим разницу между обработкой кадров Ethernet и IP-пакетов: Жизнь коммутатора уровня 2 проста Коммутатор проверит контрольную сумму кадра Ethernet, чтобы убедиться, что он не поврежден или не изменен. Коммутатор получает кадр Ethernet и добавляет исходный MAC-адрес в таблицу MAC-адресов. Коммутатор направляет кадр Ethernet к правильному интерфейсу, если он знает конечный MAC-адрес. Если нет,то он будет отброшен (помечен как flood). Там нет никакого изменения кадра Ethernet! Теперь давайте посмотрим, что происходит, когда получает IP-пакет многоуровневый коммутатор: В приведенном выше примере компьютер А посылает IP-пакет к компьютеру В. Обратите внимание, что они находятся в разных подсетях, поэтому нам придется его маршрутизировать. Когда наш многоуровневый коммутатор получит IP-пакет, вот что произойдет: Коммутатор проверит контрольную сумму кадра Ethernet, чтобы убедиться, что он не поврежден или не изменен. Коммутатор проверит контрольную сумму IP-пакета, чтобы убедиться, что он не поврежден или не изменен. Многоуровневый коммутатор проверит таблицу маршрутизации, заметит, что 192.168.20 /24 напрямую подключен, и произойдет следующее: Проверит таблицу ARP, чтобы увидеть, есть ли сопоставление уровня 2-3 для компьютера B. Если нет сопоставления, многоуровневый коммутатор отправит запрос ARP. Конечный MAC-адрес изменится с FFF (многоуровневый коммутатор Fa0 / 1) на BBB (компьютер B). Исходный MAC-адрес изменится с AAA (компьютер A) на GGG (многоуровневый коммутатор Fa0/2). Поле TTL (time to live) в IP-пакете уменьшится на 1, и из-за этого контрольная сумма IP-заголовка будет пересчитана. Контрольная сумма фрейма Ethernet должна быть пересчитана заново. Фрейм Ethernet, несущий IP-пакет, будет отправлен из интерфейса к компьютеру B. Как вы можете видеть, имеется довольно много шагов, связанных с маршрутизацией IP-пакетов. Когда мы рассматриваем многоуровневый коммутатор возникает "разделение обязанностей". Мы должны построить таблицу для MAC-адресов, заполнить таблицу маршрутизации, ARP-запросы, проверить, соответствует ли IP-пакет списку доступа и т. д. И нам нужно переслать наши IP-пакеты. Эти задачи разделены между "плоскостью управления" и "плоскостью данных". Ниже приведен пример: Плоскость управления отвечает за обмен информацией о маршрутизации с использованием протоколов маршрутизации, построение таблицы маршрутизации и таблицы ARP. Плоскость данных отвечает за фактическую пересылку IP-пакетов. Таблица маршрутизации не очень подходит для быстрой переадресации, потому что мы имеем дело с рекурсивной маршрутизацией. Что такое рекурсивная маршрутизация? Давайте рассмотрим пример: В приведенном выше примере у нас есть три маршрутизатора. У R3 есть loopback интерфейс, к которому мы хотим получить доступ из R1. Будем использовать статические маршруты для достижения поставленной цели: R1(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R1(config)#ip route 192.168.23.0 255.255.255.0 192.168.12.2 Первый статический маршрут предназначен для достижения интерфейса loopback0 R3 и указывает на интерфейс FastEthernet0/0 R3. Второй статический маршрут необходим для достижения сети 192.168.23.0/24. Всякий раз, когда R1 хочет достичь 3.3.3.0/ 24, мы должны выполнить 3 поиска: Первый поиск должен проверить запись для 3.3.3.0/24. Он должен быть там и должен быть IP-адрес следующего прыжка-192.168.23.3 Второй поиск относится к 192.168.23.3. Есть запись, и IP-адрес следующего прыжка - 192.168.12.2. Третий и последний поиск относится к 192.168.12.2. Там имеется вход, и он напрямую подключен. R1 должен проверить таблицу маршрутизации 3 раза, прежде чем он будет знать, куда отправлять свой трафик. Звучит не очень эффективно, верно? Выполнение нескольких поисков для достижения определенной сети называется рекурсивной маршрутизацией. Большую часть времени все входящие и исходящие IP-пакеты будут обрабатываться и пересылаться плоскостью данных, но есть некоторые исключения, давайте сначала рассмотрим картинку ниже: Большая часть IP-пакетов может быть передана плоскостью данных. Однако есть некоторые "специальные" IP-пакеты, которые не могут быть переданы плоскостью данных немедленно, и они отправляются на плоскость управления, вот некоторые примеры: IP-пакеты, предназначенные для одного из IP-адресов многоуровневый коммутатора. Трафик протокола маршрутизации, такой как OSPF, EIGRP или BGP. IP-пакеты, которые имеют некоторые параметры, заданные в IP-заголовке. IP-пакеты с истекшим сроком действия TTL Плоскость управления может пересылать исходящие IP-пакеты на плоскость данных или использовать свой собственный механизм пересылки для определения исходящего интерфейса и следующего IP-адреса прыжка. Примером этого является маршрутизация на основе локальной политики. Наш многоуровневый коммутатор выполняет больше шагов для пересылки пакетов, чем коммутаторы уровня 2, поэтому теоретически он должен работать медленнее, верно? Одна из причин, по которой многоуровневые коммутаторы могут передавать кадры и пакеты на wirespeed, заключается в том, что в плате данных используется специальное оборудование, называемое ASICs. Такая информация, как MAC-адреса, таблица маршрутизации или списки доступа, хранится в этих ASIC. Таблицы хранятся в content-addressable memory (Cam) и ternary content addressable memory (TCAM). Таблица CAM используется для хранения информации уровня 2, например: Исходный MAC-адрес. Интерфейс, на котором мы узнали MAC-адрес. К какой VLAN относится MAC-адрес. Поиск таблицы происходит быстро! Всякий раз, когда коммутатор получает кадр Ethernet, он будет использовать алгоритм хэширования для создания "ключа" для целевого MAC-адреса + VLAN, и он будет сравнивать этот хэш с уже хэшированной информацией в таблице CAM. Таким образом, он может быстро искать информацию в таблице CAM. Таблица TCAM используется для хранения информации "более высокого уровня", например: Списки доступа. Информацию о качестве обслуживания. Таблицу маршрутизации. Таблица TCAM может соответствовать 3 различным значениям: 0 = не просматривать. 1 = сравнивать X = любое приемлемое значение. Полезно для поиска, когда нам не нужно точное совпадение. (таблица маршрутизации или ACL, например). Поскольку существует 3 значения, мы называем его троичным. Так почему же существует 2 типа таблиц? Когда мы ищем MAC-адрес, нам всегда требуется точное совпадение. Нам нужен точный MAC-адрес, если мы хотим переслать кадр Ethernet. Таблица MAC-адресов хранится в таблице CAM. Всякий раз, когда нам нужно сопоставить IP-пакет с таблицей маршрутизации или списком доступа, нам не всегда нужно точное соответствие. Например, IP-пакет с адресом назначения 192.168.20.44 будет соответствовать: 192.168.20.44 /32 192.168.20.0 /24 192.168.0.0 /16 По этой причине такая информация, как таблица маршрутизации, хранится в таблице TCAM. Мы можем решить, должны ли совпадать все или некоторые биты. Пример таблицы TCAM Если мы хотим сопоставить IP-адрес 192.168.10.22, многоуровневый коммутатор сначала посмотрит, есть ли "самое полное совпадение". Там ничего нет, что соответствовало бы полностью 192.168.10.22/32, поэтому мы продолжим сравнение на не полное соответствие. В этом случае есть запись, которая соответствует 192.168.10.0/24. Приведенный выше пример относится к поиску таблиц маршрутизации, спискам доступа, а также к качеству обслуживания, спискам доступа VLAN и многим другим. Теперь вы знаете все шаги, которые должен выполнять многоуровневый коммутатор, когда он должен пересылать IP-пакеты, плоскость управления/данных и, что мы используем разные таблицы, хранящиеся в специальном оборудовании, называемом ASIC. Давайте подробнее рассмотрим фактическую "пересылку" IP-пакетов. Существуют различные методы коммутации для пересылки IP-пакетов. Вот различные варианты коммутации: Процессорная коммутация: Все пакеты проверяются процессором, и все решения о пересылке принимаются в программном обеспечении...очень медленно! Быстрая коммутация (также известное как кеширование маршрутов): Первый пакет в потоке проверяется процессором; решение о пересылке кэшируется аппаратно для следующих пакетов в том же потоке. Это более быстрый метод. (CEF) Cisco Express Forwarding (также известный как переключение на основе топологии): Таблица пересылки, созданная в аппаратном обеспечении заранее. Все пакеты будут коммутироваться с использованием оборудования. Это самый быстрый метод, но есть некоторые ограничения. Многоуровневые коммутаторы и маршрутизаторы используют CEF. При использовании процессорной коммутации маршрутизатор удалит заголовок каждого кадра Ethernet, ищет IP-адрес назначения в таблице маршрутизации для каждого IP-пакета, а затем пересылает кадр Ethernet с переписанными MAC-адресами и CRC на исходящий интерфейс. Все делается в программном обеспечении, так что это очень трудоемкий процесс. Быстрая коммутация более эффективна, потому что она будет искать первый IP-пакет, но будет хранить решение о переадресации в кэше быстрой коммутации. Когда маршрутизаторы получают кадры Ethernet, несущие IP-пакеты в том же потоке, он может использовать информацию в кэше, чтобы переслать их к правильному исходящему интерфейсу. По умолчанию для маршрутизаторов используется CEF (Cisco Express Forwarding):
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59