По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Подключения прибора Для подключения прибора к измеряемому потоку используются разъемы на задней (или верхней) стенке прибора: Tx OUTliUT выход, или передача прибора подключить к Rx (прием) измеряемого потока; Rx INliUT вход, или прием прибора подключить к Tx (передача) измеряемого потока. На левой стенке расположен разъем EXT PWR для подключения адаптера внешнего питания. Прибор продолжительное время (несколько часов) может работать от встроенных аккумуляторов. Включение прибора Нажать клавишу <On> - через 2-3 секунды прибор включится. В правом верхнем углу указано название текущего меню. В нижней части дисплея указано назначение функциональных клавиш в данном режиме (смотри рисунок). При включении прибора отображается главное меню "Main menu". Если вы не знаете, в каком меню находитесь и что делать дальше, нажмите кнопку <Main menu>. Далее, следуйте инструкции. Контроль потока и подключения В главном меню (Main menu) нажать кнопку <-more-> (клавиша S6), до появления в левом нижнем углу пункта меню <Monit>. Выбрав данный пункт (клавишей S1), вы попадаете в меню мониторинга, где возможно контролирование потока и отдельного канального интервала. В правом верхнем углу отображается состояние потока: No signal нет сигнала на входе прибора. Возможно перепутаны прием/передача оборудования, или неисправен соединительный шнур; AIS сигнал удаленной аварии. На дальнем конце измеряемый поток не нагружен; Frame sync loss потеря цикловой синхронизации. Прибор принимает не тот сигнал, который передает. Возможно отсутствует шлейф на дальнем конце, или подключен не тот поток. *Words* - "слова". Аварии отсутствуют - прибор принимает передаваемый им сигнал и готов к проведению измерений. Проведение измерений Для измерения потока E1 необходимо выполнить следующее: Выйти в главное меню нажатием кнопки <MAIN MENU> Нажать Menu1, основные параметры, убедиться, что выставлены параметры: Первый столбец: [Mode] режим, возможны значения: RX/TX прием/передача, измерения по завороту; RX прием, измерения на рабочем потоке, параллельно; THROUGH через, поток пропускается через прибор; DELAY. Для измерений по завороту необходимо выбрать режим RX/TX [Interface] - G.703 интерфейс G.703; [Line code] - HDB3линейный код HDB3; [Framing] - liCM30формат кадра ИКМ-30; liCM-31 с использованием 16-го ки; OFFбез цикловой структуры. Рекомендации по выбору режима: выставить PCM-31. Если прибор не может засинхронизироваться, возникает аварийная сигнализация переключить в режим PCM-30. При невозможности проведения измерений в данном режиме возможно(но не рекомендуется) проведение измерений без цикловой структуры (режим OFF). [Termination] 75/120Ω - сопротивление интерфейса 75/120 Ом; [Tx Clc src] - INTERNисточник синхронизации передачи внутренний или FROM RX от сигнала приема; [Kblis] - 2048 скорость передачи 2048 кбит/с; Второй столбец: [V.11 slot] - OFF ввод/вывод данных в какой-либо канальный интервал посредством интерфейса V.11 откл.; [Rx slots] - канальные интервалы, по которым производится измерения, принимает значения: OFF откл; 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме); nx64 несколько канальных интервалов, в данном режиме возможен выбор нескольких или всех канальных интервалов для проведения измерений. При выборе пункта <nx64> открывается меню "Rx Slots (BERT)", в котором производится выбор канальных интервалов: ALL выбрать все Clear очистить выбор (действие, обратное предыдущему) Select выбрать ки, обозначенный курсором De-select отменить выбор ки, обозначенного курсором Return возврат в предыдущее меню Рекомендации по выбору ки: как правило, измерения проводятся по полному потоку, то есть должны быть выбраны все канальные интервалы, последовательность действий: <Rx slots> <nx64> <ALL> <Return> [Rx audio] OFF канальный интервал, который будет прослушиваться через встроенный динамик. Возможно указание любого ки, или отключение опции.На ход измерений не влияет; [Rx signaling] OFF; [Tx slots] - канальные интервалы, по которым передается тестовая последовательность. Возможны режимы: OFF - откл. передача не осуществляется; USER - по выбору пользователя; AS RX - в соответствии с приемом. Выбраны те канальные интервалы, которые контролируются по приему; IDLE - свободно, передается последовательность IDLE (задается в следующем меню, обозначает неиспользуемые ки); 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме). Рекомендации по выбору ки: рекомендуется выбрать режим <AS RX> Примечание: в режиме Framing OFF параметры второго столбца отсутствуют. В режиме Framing PCM31 параметр Rx signaling отсутствует. Перейти в следующее меню menu2, параметры тестовой последовательности: Параметры по умолчанию: [Idle liattern] 0110 1010; [Bert liattern] 215 -1; [Bert signaling] 1010; [Idle signaling] 1010; Bits/Block - 1000; NFAS/NMFAS - norm; Tx logic - norm; Rx logic - norm. Некоторые параметры могут отсутствовать в зависимости от выбора режима Framing. Ничего изменять не нужно. Перейти в следующее меню menu3, проконтролировать параметры: [Current test] - текущее измерение, при многократных измерениях для сохранения результатов номер измерения следует поменять на следующий. Например, если произведено измерение под № 5, то при следующем измерении следует установить №6. Тогда в ячейке №5 результаты сохранятся; [Timer] - On таймер включен. В меню Timer необходимо задать продолжительность тестирования, для этого необходимо навести указатель на пункт Timer, нажать <edit> - откроется timer menu: [Start time] - manual запуск теста - вручную; [Duration] - продолжительность. Userзадана пользователем, далее необходимо указать продолжительность тестирования: 0 days (дни) 0 hrs (часы) 15 mins (минуты). При необходимости возможен режим Continпродолжительный, до остановки пользователем. Далее нажать Return, чтобы вернуться в предыдущее меню. [Autolirint] - Off - автоматическая печать выключена; G.821 - ITU-T - контроль по протоколу G.821 включен, согласно рекомендации ITU-T; [Alarms] All on - контроль аварий все аварии; [Resolution] - HRS/MINS - частота записи результатов часы/минуты; [Beelier] - Off; [Err inject] - Ratio - ввод ошибок. Нажать кнопку <Run> - запуск. Начнутся измерения. На экране появляется информация о производимых измерениях: правая часть экрана краткая информация о параметрах измерений, левая часть экрана надпись ОКили присутствующие аварии и зафиксированные ошибки. RX/TX - режим измерений; G.703, liCM31 - основные параметры измерений; Rx - звездочкой обозначены измеряемые канальные интервалы, если стоит точка канальный интервал пропускается; Total seconds - время в секундах, прошедшее с начала измерений; Bit err ratio - коэффициент битовых ошибок. Перенос результатов измерений в ПК По завершении измерений на экране отображаются краткие результаты. Для переноса измерений на компьютер необходимо: Выключить прибор и перенести его к месту установки компьютера. Подключить прибор к компьютеру, для этого: порт V.24/RS-232 прибора (с правой стороны) подключить через переходной соединительный кабель к com-порту компьютера. Запустить на компьютере программу HyperTerminal. (В программе HyperTerminal должен быть задан номер com-порта, к которому подключен прибор и параметры соединения: скорость 9600 бит/с; биты данных 8, четность нет; стоповые биты 1; управление потоком Xon/Xoff) Включить прибор. Найти пункт меню "Memory". Если его нет, можно нажать кнопку <more>, для отображения других возможностей меню до появления нужной кнопки. В меню "Memory" отображаются все сохраненные результаты, установить курсор на нужном пункте (можно определить по дате и времени измерений) Нажать <Results>, на экране появятся результаты измерений, нажать кнопку <Print>, результаты будут переданы в окно HyperTerminal. Из окна программы результаты можно скопировать и вставить в любой текстовый документ: WordPad (блокнот) или Microsoft Word. _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:32 11 Mar 2011 _____________________________________________________________________________ Printout of menu settings *Setup Menu 1* Mode RX/TX Interface G.703 Line code HDB3 Framing PCM31C Termination 75/120 Ohm Tx Clk source INTERN kbps 2048 V.11 OFF Rx slots BERT-Rx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Rx audio OFF Tx slots AS RX *Setup Menu 2* Idle pattern 0000 0000 BERT pattern 2^15-1 Bits/Block 1000 Rx logic NORM Tx logic NORM *Setup Menu 3* Autoprint OFF G.821 ITU-T Multiframe ITU-T Alarms USER Resolution HRS/MINS *Alarm Display* AIS ON Fr Sync ON All ones ON All zeros ON Patt loss ON Patt Inv Slip ON Dist Fr ON Bit error ON CRC err ON FAS err ON Code err ON _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:33 11 Mar 2011 _____________________________________________________________________________ Printout of test results for test number 2 Start time 09:25 10 Mar 2011 Stop time 09:25 11 Mar 2011 Total test time (seconds) 86400 Line rate 2047994 Total code errors received 0 Total mean Code Error Ratio 0.000E 0 Bit rate 1983995 Total bits received 1.174E 11 Total errors received 0 Total mean Bit Error Ratio 0.000E 0 Total blocks received 1.174E 8 Total block errors received 0 Total mean Block Error Ratio 0.000E 0 Seconds of no signal 0 Seconds of AIS Seconds of pattern sync loss 0 Seconds of Pattern Inverted 0 Seconds of all ones 0 Seconds of all zeros 0 Seconds of slip 0 Seconds of frame sync loss 0 Seconds of distant frame alarm 0 Total FAS word errors 0 Total number of frames 0 Total number of frames 6.912E 8 Total mean FAS word error ratio 0.000E 0 Total CRC word errors 0 Available time 86400 100.00000% Unavailable time 0 0.00000% Error free seconds 86400 100.00000% Errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000%
img
Ваш клиент хочет перестроить свою систему IP-телефона или, возможно, впервые перейти на нее. Вы придете к нему с проприетарной системой, например, CUCM, или открытой стандартной системой, например, Asterisk? Прежде чем сделать выбор, важно не упускать сразу ни один из вариантов. Понимание всех входов и выходов каждого типа системы, а также конкретных требований вашего клиента имеет важное значение. Давайте рассмотрим некоторые сильные и слабые стороны каждого подхода. Положительные и отрицательные стороны открытых АТС АТС с открытым стандартом являются решениями с открытым стеком, использующими стандартный подход - например, SIP - для передачи мультимедийных сообщений. Широко распространенные и признанные благодаря своей универсальности в использовании и гибкости, системы АТС с открытым стандартом не имеют многих недостатков для многих предприятий сегодня. Наряду с необходимыми функциями телефонии, некоторые передовые решения, также предлагают высококачественные унифицированные коммуникации из коробки. В целом системы АТС с открытым стандартом обеспечивают: Лучшее соотношение цены и качества: Опенсорс АТС часто ассоциируется с существенной экономией, потому что ею легко управлять, и в большинстве случаев нужно беспокоиться о небольших лицензионных сборах. По сравнению с запатентованными решениями, которые заключают вас в долгосрочные контракты на обслуживание или дорогостоящий ремонт системы, решения с открытыми стандартами могут быть более рентабельными во многих бизнес-сценариях. Устранить риск блокировки поставщика: Истинная ценность таких АТС заключается в возможности сочетать набор стандартных компонентов для предоставления инновационных услуг. С системой можно использовать практически любой SIP-телефон, шлюз или периферийные устройства на основе стандарта, что способствует удовлетворенности пользователей и производительности бизнеса. Проще установить и настроить: Если вы используете проприетаруню телефонную систему, вы, вероятно, уже знаете о трудностях, возникающих при ее установке, использовании и обслуживании. Вместо этого системы АТС открытого стандарта просты в использовании и управлении. Это может быть особенно актуально для тех, кто использует Asterisk с интуитивно понятным интерфейсом. Совместимость и настройка: Кастомизация очень важна для телефонных систем. И на этом этапе выигрывают АТС открытого стандарта. Относительно легко интегрироваться с другими стандартными приложениями, такими как базы данных, CRM, PMS отеля, колл-центр и другие, чтобы удовлетворить специфические потребности клиентов. Хотя АТС с открытым стандартом, по большому счету, не имеют многих недостатков, качество всей системы сильно зависит от поставщиков и интеграторов. Некоторые, выбравшие бесплатные открытые решения утверждают, что им не хватает нужных функций, профессиональной поддержки и частых обновлений. Положительные и отрицательные стороны проприетарной АТС Проприетарной АТС являются «закрытой» системой, разработанной специально производителями, в комплекте с собственным брендом. Большинство проприетарных решений, таких как NEC или Panasonic, считаются относительно надежными, но менее привлекательными с финансовой точки зрения. С проприетарной системой вы получаете практически все ваше оборудование и программное обеспечение от одного поставщика, который будет поддерживать и гарантировать все, от АТС до мобильных телефонов. Таким образом, некоторые из преимуществ включают в себя: Единый пользовательский опыт: В большинстве случаев проприетарные системы предлагают единый пользовательский интерфейс. Вся система VoIP остается согласованной для всех совместимых аппаратных и программных приложений. Таким образом, вы можете ожидать аналогичного и знакомого взаимодействия с каждым устройством. Поддержка производителя: Благодаря проприетарной системе ваш поставщик имеет единоличный контроль над обновлениями, обновлениями и модификациями. Как следствие, вы, как торговый посредник или дистрибьютор, могли бы иметь больший контроль над клиентами, но вам нужно будет вкладывать больше ресурсов в освоение сложных запатентованных систем и интерфейсов для лучшей поддержки клиентов. Наряду с преимуществами проприетарного решения, есть некоторые недостатки, которыми нельзя пренебрегать. Самые большие из них могут быть связаны с затратами, риском блокировки поставщиков и ограниченной гибкостью. Многие запатентованные продукты могут функционировать должным образом только при использовании с другими продуктами того же производителя. Другими словами, вы, скорее всего, будете заложниками проприетарных мобильных телефонов и периферийных устройств, которые могут быть переоценены с ограниченной функциональностью, что приведет к негативным последствиям в процессе продаж. Еще одна важная вещь, которую следует помнить, это то, что с проприетарной системой АТС вы не сможете достичь того же уровня гибкости, что и решения с открытыми стандартами. Поскольку проприетарные решения обычно не допускают обходных путей для разработчиков, специфичных для данной проблемы, скорее всего, вы не сможете реализовать наименьшие изменения, необходимые для лучшей адаптации решения к потребностям вашего бизнеса. И когда возникают сложные проблемы, ваш поставщик является вашей единственной резервной копией. Предвидение: бизнес-экосистема и возможности В условиях постоянно расширяющегося горизонта и достижений на рынке VoIP ключом к тому, чтобы телефонная система оставалась впереди, было стремление идти в ногу с рыночными тенденциями и предлагать жизнеспособные решения, чтобы вписаться в более широкий спектр потребностей клиентов. И нельзя отрицать, что решения открытых стандартов имеют конкурентные преимущества. Роль собственности как первичного новатора на рынке ушла на второй план. Распространенность промышленных открытых стандартов, таких как SIP и телефония с открытым исходным кодом, таких как Asterisk, произвела революцию в экосистеме и принесла больше возможностей для бизнеса. Используя коллективные усилия огромного мирового сообщества экспертов, новые непатентованные, то есть открытые, системы набирают обороты. Они приносят преимущества, связанные с открытым SIP и открытым исходным кодом: стабильность, быстрое развитие, гибкость и, самое главное, экономия затрат. Благодаря постоянно развивающимся решениям открытого стандарта пользователям теперь предоставляется больше свободы для взаимодействия нескольких приложений и интеграции систем данных. Интеграторы все чаще хотят их, а конечные пользователи требуют от них более высокого уровня соотношения цена-качество и устранения риска привязки к поставщику. Итого И проприетарные, и открытые стандартные системы имеют свои явные преимущества. Важно знать своих клиентов и понимать их потребности. Сколько они могут позволить себе новую телефонную систему? Какой уровень гибкости и настройки они требуют? Есть ли у них собственный опыт по обслуживанию системы? Задавая правильные вопросы, вы сможете сделать выбор, чтобы предложить наилучшее решение.
img
Существует новая тенденция для стандартов проектирования топологии сети - создание быстрой, предсказуемой, масштабируемой и эффективной коммуникационной архитектуры в среде центра обработки данных. Речь идет о топологии Leaf-Spine, о которой мы поговорим в этой статье. Почему Leaf-Spine? Учитывая повышенный фокус на массовые передачи данных и мгновенные перемещения данных в сети, стареющие трехуровневые конструкции в центрах обработки данных заменяются так называемым дизайном Leaf-Spine. Архитектура Leaf-Spine адаптируется к постоянно меняющимся потребностям компаний в отраслях big data с развивающимися центрами обработки данных. Другая модель Традиционная трехуровневая модель была разработана для использования в общих сетях. Архитектура состоит из Core маршрутизаторов, Aggregation маршрутизаторов (иногда этот уровень называется Distribution) и Access коммутаторов. Эти устройства взаимосвязаны путями для резервирования, которые могут создавать петли в сети. Частью дизайна является протокол Spanning Tree (STP) , предотвращающий петли, однако в этом случае деактивируется все, кроме основного маршрута и резервный путь используется только тогда, когда основной маршрут испытывает перебои в работе. Введение новой модели С конфигурацией Leaf-Spine все устройства имеют точно такое же количество сегментов и имеют предсказуемую и согласованную задержку информации. Это возможно из-за новой конструкции топологии, которая имеет только два слоя: слой «Leaf» и «Spine». Слой Leaf состоит из access коммутаторов, которые подключаются к таким устройствам как сервера, фаерволы, балансировщики нагрузки и пограничные маршрутизаторы. Уровень Spine, который состоит из коммутаторов, выполняющих маршрутизацию, является основой сети, где каждый коммутатор Leaf взаимосвязан с каждым коммутатором Spine. Чтобы обеспечить предсказуемое расстояние между устройствами в этом двухуровневом дизайне, динамическая маршрутизация уровня 3 используется для соединения уровней. Она позволяет определить наилучший маршрут и настроить его с учетом изменения сети. Этот тип сети предназначен для архитектур центров обработки данных, ориентированных на сетевой трафик типа «Восток-Запад» (East-West). Такой трафик содержит данные, предназначенные для перемещения внутри самого центра обработки данных, а не наружу в другую сеть. Этот новый подход является решением внутренних ограничений Spanning Tree с возможностью использования других сетевых протоколов и методологий для достижения динамической сети. Преимущества Leaf-Spine В Leaf-Spine сеть использует маршрутизацию 3го уровня. Все маршруты сконфигурированы в активном состоянии с использованием протокола равноудаленных маршрутов Equal-Cost Multipathing (ECMP) . Это позволяет использовать все соединения одновременно, сохраняя при этом стабильность и избегая циклов в сети. При использовании традиционных протоколов коммутации уровня 2, таких как Spanning Tree в трехуровневых сетях, он должен быть настроен на всех устройствах правильно, и все допущения, которые использует протокол Spanning Tree Protocol (STP), должны быть приняты во внимание (одна из простых ошибок, когда конфигурация STP связана с неправильным назначением приоритетов устройства, что может привести к неэффективной настройке пути). Удаление STP между уровнями Access и Aggregation приводит к гораздо более стабильной среде. Другим преимуществом является простота добавления дополнительного оборудования и емкости. Когда происходит ситуация перегрузки линков, которая называется oversubscription (что означает, что генерируется больше трафика, чем может быть агрегировано на активный линк за один раз) возможность расширять пропускную способность проста - может быть добавлен дополнительный Spine коммутатор и входящие линии могут быть расширены на каждый Leaf коммутатор, что приведет к добавлению полосы пропускания между уровнями и уменьшению перегрузки. Когда емкость порта устройства становится проблемой, можно добавить новый Leaf коммутатор. Простота расширения оптимизирует процесс ИТ-отдела по масштабированию сети без изменения или прерывания работы протоколов коммутации уровня 2. Недостатки Leaf-Spine Однако этот подход имеет свои недостатки. Самый заметный из них – увеличение количества проводов в этой схеме, из-за соединения каждого Leaf и Spine устройства. А при увеличении новых коммутаторов на обоих уровнях эта проблема будет расти. Из-за этого нужно тщательно планировать физическое расположение устройств. Другим основным недостатком является использование маршрутизации уровня 3.Ее использование не дает возможность развертывать VLAN’ы в сети. В сети Leaf-Spine они локализованы на каждом коммутаторе отдельно – VLAN на Leaf сегменте недоступен другим Leaf устройствам. Это может создать проблемы мобильности гостевой виртуальной машины в центре обработки данных. Применение Leaf-Spine Веб-приложения со статичным расположением сервера получат преимущество от реализации Leaf-Spine. Использование маршрутизации уровня 3 между уровнями архитектуры не препятствует приложениям веб-масштаба, поскольку они не требуют мобильности сервера. Удаление протокола Spanning Tree Protocol приводит к более стабильной и надежной работе сети потоков трафика East-West. Также улучшена масштабируемость архитектуры. Корпоративные приложения, использующие мобильные виртуальные машины (например, vMotion), создают проблему, когда сервер нуждается в обслуживании внутри центра обработки данных, из-за маршрутизации уровня 3 и отсутствие VLAN. Чтобы обойти эту проблему, можно использовать такое решение, как Software Defined Networking (SDN) , которое создает виртуальный уровень 2 поверх сети Leaf-Spine. Это позволяет серверам беспрепятственно перемещаться внутри центра обработки данных. Другие решения В качестве альтернативы маршрутизации уровня 3 топология Leaf-and-Spine может использовать другие протоколы, такие как Transparent Interconnection of Lots of Links (TRILL) или Shortest Path Bridging (SPB) для достижения аналогичной функциональности. Это достигается за счет сокращения использования Spanning Tree и включения ECMP уровня 2, а также поддержки развертывания VLAN между Leaf коммутаторами. Итог Сети Leaf-Spine предлагают множество уникальных преимуществ по сравнению с традиционной трехуровневой моделью. Использование маршрутизации 3-го уровня с использованием ECMP улучшает общую доступную пропускную способность, используя все доступные линии. Благодаря легко адаптируемым конфигурациям и дизайну, Leaf-Spine улучшает управление масштабируемостью и контролем над перегрузкой линий. Устранение протокола Spanning Tree Protocol приводит к значительному повышению стабильности сети. Используя новые инструменты и имея способность преодолевать присущие ограничения другими решениям, такими как SDN, среды Leaf-Spine позволяют ИТ-отделам и центрам обработки данных процветать при удовлетворении всех потребностей и потребностей бизнеса.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59