По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Символические ссылки используются в Linux для управления файлами и их сопоставления. В этом руководстве вы узнаете, как использовать команду ln для создания символических ссылок в Linux. Команда Ln для создания символических ссылок Чтобы использовать команду ln, откройте окно терминала и введите команду в следующем формате: ln [-sf] [source] [destination] По умолчанию команда ln создает hard link (жесткая ссылка). Используйте параметр -s, чтобы создать символическую ссылку, она же soft link. Параметр -f заставит команду перезаписать уже существующий файл. Source - это файл или каталог, на который делается ссылка. Destination - это место для сохранения ссылки - если это поле не заполнено, символическая ссылка сохраняется в текущем рабочем каталоге. Например, создайте символическую ссылку с помощью: ln -s test_file.txt link_file.txt Это создает символическую ссылку link file.text, которая указывает на testfile.txt. Чтобы проверить, создана ли символическая ссылка, используйте команду ls: ls -l link_file.txt Создать символическую ссылку на каталог Linux Символическая ссылка может относиться к каталогу. Чтобы создать символическую ссылку на каталог в Linux: ln -s /mnt/external_drive/stock_photos ~/stock_photos В этом примере создается символическая ссылка с именем stock_photos в домашнем каталоге ~ /. Ссылка относится к каталогу stock_photos на внешнем диске external_drive. Примечание. Если система подключена к другому компьютеру, например к корпоративной сети или удаленному серверу, символические ссылки могут быть связаны с ресурсами в этих удаленных системах. Принудительно перезаписать символические ссылки Вы можете получить сообщение об ошибке, как показано на изображении ниже: Сообщение об ошибке означает, что в месте назначения уже есть файл с именем link_file.txt. Используйте параметр -f, чтобы система перезаписывала целевую ссылку: ln -sf test_file.txt link_file.txt Примечание. Использование опции -f навсегда удалит существующий файл. Удаление ссылок Если исходный файл будет перемещен, удален или станет недоступным (например, сервер отключится), ссылку нельзя будет использовать. Чтобы удалить символическую ссылку, используйте команду rm (remove) или unlink: rm link_file.txt unlink link_file.txt Soft Links против Hard Links Команду ln можно использовать для создания двух разных типов ссылок: Hard Links (жесткие ссылки) Soft Links (символические или мягкие ссылки) Символические ссылки (Soft Links) Символическая ссылка, иногда называемая мягкой ссылкой или soft link, указывает на расположение или путь к исходному файлу. Она работает как гиперссылка в Интернете. Вот несколько важных аспектов символической ссылки: Если файл символьной ссылки удаляется, исходные данные остаются. Если исходный файл будет перемещен или удален, символическая ссылка работать не будет. Символическая ссылка может относиться к файлу в другой файловой системе. Символические ссылки часто используются для быстрого доступа к часто используемым файлам без ввода всего местоположения. Жесткие ссылки (Hard Links) Когда файл хранится на жестком диске, происходит несколько вещей: Данные физически записываются на диск. Создается справочный файл, называемый индексом, который указывает на расположение данных. Имя файла создается для ссылки на данные inode. Жесткая ссылка работает путем создания другого имени файла, которое ссылается на данные inode исходного файла. На практике это похоже на создание копии файла. Вот несколько важных аспектов жестких ссылок: Если исходный файл удален, к данным файла все равно можно будет получить доступ через другие жесткие ссылки. Если исходный файл перемещен, жесткие ссылки по-прежнему работают. Жесткая ссылка может относиться только к файлу в той же файловой системе. Если количество жестких ссылок равно нулю, индексный дескриптор и данные файла удаляются безвозвратно.
img
Друг, если ты еще ни разу не пользовался утилитой sngrep, то эта статья точно для тебя! Если кратко, то sngrep позволяет отображать потоки SIP – вызова (sip flow) прямо в консоли твоего сервера. Утилита покажет SIP – обмен сообщениями в удобной и читаемой форме. Скажем так: sngrep это tcpdump (или wireshark под Linux), но только для VoIP :) /p> Установка на CentOS Рассмотрим быструю установку утилиты на операционной системе CentOS. Первым делом добавим irontec репозиторий. Для этого, создадим файл с именем sngrep.repo в директории /etc/yum.repos.d: touch /etc/yum.repos.d/sngrep.repo Добавляем в файл следующие строки: [irontec] name=Irontec RPMs repository baseurl=http://packages.irontec.com/centos/$releasever/$basearch/ Затем импортируем публичный ключ от irontec: rpm --import http://packages.irontec.com/public.key Все готово к установке. Даем следующие команды: yum update yum install sngrep По окончанию установки, в командной строке дайте команду sngrep. Теперь давайте разберемся с функционалом и тем как пользоваться утилитой. Использование sngrep Как только вы попадете в меню управления утилитой, перед вами будет отражен список VoIP пакетов, которые обрабатывает Ваш сервер: Нажав на Enter вы сможете более детально изучить каждое сообщение. Нажав F5, вы сможете удалить текущие сообщения. Для передвижения между сообщениями используйте стрелки на клавиатуре. При детализации звонка, можно нажать F2/F3 для получения SDR/RTP информации. Для выхода и возврата в предыдущее меню нажмите Esc. Если кратко, следующие опции доступны в базовом интерфейса sngrep: F1 - открыть функциональный помощник; F2 - сохранить собранный дамп в указанный файл; F3 - отфильтровать данные по указанной строке; F4 - показать выбранный расширенный call – flow (схема звонка, с указанием всех этапов его инициации); F5 - удалить собранный дамп; F6 - показать выбранный дамп в текстовом формате (без визуализации стрелочками, только сухие SIP – сообщения); F7 - показать опции фильтрации (фильтровать можно по полю From/To, по источнику и назначению звонка, а так же по различным данным из информационного сегмента поля полезной нагрузки, то есть не из заголовка). Помимо прочего, есть возможность отмечать типы сообщения, такие как REGISTER, INVITE, OPTIONS и прочие; F8 - показать настройки, среди который подсветка синтаксиса, фон и прочие; F10 - настройка отображаемых параметров (такие как From/TO, индекс, метод и прочие); Esc - выйти из sngrep/в предыдущее меню; Enter -посмотреть call-flow выбранного пакета; Space (пробел) - выделить нужный сегмент; i/I - фильтрация только по сообщения типа INVITE; p - поставить на паузу сбор пакетов;
img
gRPC — это мощная платформа для работы с удаленными вызовами процедур (Remote Procedure Calls). RPC позволят писать код так, как будто он будет выполняться на локальном компьютере, даже если он может выполняться на другом компьютере. Что такое RPC? RPC — это форма взаимодействия клиент-сервер, в которой используется вызов функции, а не обычный вызов HTTP. Идея в том, что мы можем вызвать и выполнить функцию где-то на удаленной системе, как если бы это была локальная функция. Он использует IDL (Interface Definition Language - язык описания интерфейса) как форму контракта на вызываемые функции и тип данных. RPC — это протокол "запрос-ответ", т.е. он следует модели "клиент-сервер": Клиент делает запрос на выполнение процедуры на удаленном сервере. Как и при синхронном локальном вызове, клиент приостанавливается до тех пор, пока не будут возвращены результаты процедуры. Параметры процедуры передаются по сети на сторону сервера. Процедура выполняется на сервере и, наконец, результаты передаются обратно клиенту. gRPC воспроизводит этот архитектурный стиль взаимодействия клиент-сервер через вызовы функций. Таким образом, gRPC технически не является новой концепцией. Скорее, он был заимствован из этой старой техники и улучшен, что сделало ее очень популярной. Что такое gRPC? В 2015 году Google открыл исходный код своего проекта, который в конечном итоге получил название gRPC. Но что на самом деле означает буква «g» в gRPC? Многие люди могут предположить, что это для Google, потому что Google это сделал, но это не так. Google меняет значение «g» для каждой версии до такой степени, что они даже сделали README, чтобы перечислить все значения. С момента появления gRPC он приобрел довольно большую популярность, и многие компании используют его. Есть много причин, по которым gRPC так популярен: простая абстракция, он поддерживается во многих языках и он очень эффективный. И помимо всех вышеперечисленных причин, gRPC популярен потому, что очень популярны микросервисы и имеется большое количество взаимодействий между ними. Именно здесь gRPC помогает больше всего, предоставляя поддержку и возможности для решения типичных проблем, возникающих в таких ситуациях. А поскольку разные сервисы могут быть написаны на разных языках, gRPC поставляется с несколькими библиотеками для их поддержки. Архитектура gRPC Мы сказали что производительность gRPC очень высока, но что делает ее такой хорошей? Что делает gRPC намного лучше, чем RPC, если их дизайн очень похож? Вот несколько ключевых отличий, которые делают gRPC столь эффективным. HTTP/2 HTTP был с нами очень долго. Сейчас почти все серверные службы используют этот протокол. HTTP/1.1 долгое время оставался актуальным, затем в 2015 году, появился HTTP/2, который фактически заменил HTTP/1.1 как самый популярный транспортный протокол в Интернете. Если вы помните, что 2015 год был также годом выхода gRPC, и это было вовсе не совпадение. HTTP/2 также был создан Google для использования gRPC в его архитектуре. HTTP/2 — одна из важных причин, почему gRPC может работать так хорошо. И в следующем разделе вы поймете, почему. Мультиплексирование запроса/ответа В традиционном протоколе HTTP невозможно отправить несколько запросов или получить несколько ответов вместе в одном соединении. Для каждого из них необходимо создать новое соединение. Такой вид мультиплексирования запроса/ответа стал возможен в HTTP/2 благодаря введению нового уровня HTTP/2, называемого binary framing. Этот двоичный уровень инкапсулирует и кодирует данные. На этом уровне HTTP-запрос/ответ разбивается на кадры (они же фреймы). Фрейм заголовков (HEADERS frame) содержит типичную информацию заголовков HTTP, а фрейм данных (DATA frame) содержит полезные данные. Используя этот механизм, можно получить данные из нескольких запросов в одном соединении. Это позволяет получать полезные данные из нескольких запросов с одним и тем же заголовком, тем самым идентифицируя их как один запрос. Сжатие заголовка Вы могли столкнуться со многими случаями, когда заголовки HTTP даже больше, чем полезная нагрузка. И HTTP/2 имеет очень интересную стратегию под названием HPack для решения этой проблемы. Во-первых, все в HTTP/2 кодируется перед отправкой, включая заголовки. Это помогает повысить производительность, но это не самое важное в сжатии заголовков. HTTP/2 сопоставляет заголовок как на стороне клиента, так и на стороне сервера. Из этого HTTP/2 может узнать, содержит ли заголовок одно и то же значение, и отправляет значение заголовка только в том случае, если оно отличается от предыдущего заголовка. Как видно на картинке выше, запрос № 2 отправит только новый путь, так как другие значения точно такие же как и были. И да, это значительно сокращает размер полезной нагрузки и, в свою очередь, еще больше повышает производительность HTTP/2. Что такое Protocol Buffer (Protobuf)? Protobuf — это наиболее часто используемый IDL для gRPC. Здесь вы храните свои данные и функциональные контракты в виде так называемого прото-файла. По сути это протокол сериализации данных, такой как JSON или XML. Выглядит это так: message Person { required string name = 1; required int32 id = 2; optional string email = 3; } Так мы определили сообщение Person с полями name, id и email Поскольку это форма контракта то и клиент, и сервер должны иметь один и тот же прото-файл. Файл proto действует как промежуточный контракт для клиента, чтобы вызвать любые доступные функции с сервера. Protobuf также имеет собственные механизмы, в отличие от обычного REST API, который просто отправляет строки JSON в виде байтов. Эти механизмы позволяют значительно уменьшить полезную нагрузку и повысить производительность. Что еще может предложить gRPC? Метаданные Вместо обычного заголовка HTTP-запроса в gRPC есть то, что называется метаданными (Metadata). Метаданные — это тип данных «ключ-значение», которые можно установить как на стороне клиента, так и на стороне сервера. Заголовок может быть назначен со стороны клиента, в то время как серверы могут назначать заголовок и трейлеры, если они оба представлены в виде метаданных. Потоковая передача Потоковая передача (Streaming) — это одна из основных концепций gRPC, когда в одном запросе может выполняться несколько действий. Это стало возможным благодаря упомянутой ранее возможности мультиплексирования HTTP/2. Существует несколько видов потоковой передачи: Server Streaming RPC: когда клиент отправляет один запрос, а сервер может отправить несколько ответов. Например, когда клиент отправляет запрос на домашнюю страницу со списком из нескольких элементов, сервер может отправлять ответы по отдельности, позволяя клиенту использовать отложенную загрузку. Client Streaming RPC: когда клиент отправляет несколько запросов, а сервер отправляет обратно только один ответ. Например, zip/chunk, загруженный клиентом. Bidirectional Streaming RPC: клиент и сервер одновременно отправляют сообщения друг другу, не дожидаясь ответа. Перехватчики gRPC поддерживает использование перехватчиков для своего запроса/ответа. Они перехватывают сообщения и позволяют вам изменять их. Это звучит знакомо? Если вы работали с HTTP-процессами в REST API, перехватчики очень похожи на middleware (оно же промежуточное ПО). Библиотеки gRPC обычно поддерживают перехватчики и обеспечивают простую реализацию. Перехватчики обычно используются для: Изменения запроса/ответа перед передачей. Это можно использовать для предоставления обязательной информации перед отправкой на клиент/сервер. Позволяет вам манипулировать каждым вызовом функции, например, добавлять дополнительные логи для отслеживания времени отклика. Балансировки нагрузки Если вы еще не знакомы с балансировкой нагрузки, это механизм, который позволяет распределять клиентские запросы по нескольким серверам. Но балансировка нагрузки обычно делается на уровне прокси (например, nginx). Так причем это здесь? Дело в том, что gRPC поддерживает метод балансировки нагрузки клиентом. Он уже реализован в библиотеке Golang и может быть легко использован. Хотя это может показаться какой-то магией, это не так. Там есть что-то типа преобразователя DNS для получения списка IP-адресов и алгоритм балансировки нагрузки под капотом. Отмена вызова Клиенты gRPC могут отменить вызов gRPC, когда им больше не нужен ответ. Однако откат на стороне сервера невозможен. Эта функция особенно полезна для потоковой передачи на стороне сервера, когда может поступать несколько запросов к серверу. Библиотека gRPC оснащена шаблоном метода наблюдателя, чтобы узнать, отменен ли запрос, и позволить ей отменить несколько соответствующих запросов одновременно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59