По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Любая программа – это набор инструкций, будь то добавление 2 чисел или отправка запроса по сети. Компиляторы и интерпретаторы берут понятный для человека код и переводят его на машинный язык, который может прочесть компьютер. В компилируемом языке целевая машина переводит программу самостоятельно. В интерпретируемом языке исходный код не переводится самой машиной; его читает и выполняет другая программа (интерпретатор). Подробное объяснение Представьте ситуацию: вы решили приготовить хумус. Но имеющийся у вас рецепт написан на древнегреческом. У вас, как человека не знающего этого языка, есть два варианта. Вариант 1: кто-то уже перевел этот рецепт на ваш язык. Поэтому вы (и любой человек, знающий ваш язык) сможете прочесть рецепт в переводе и приготовить хумус. Переведенный рецепт и будет компилированной версией. Есть и другой вариант: у вас есть друг, который знает древнегреческий. Поэтому, решив приготовить хумус, вы пригласили этого друга к себе. Друг сидит рядом и переводит рецепт – строчка за строчкой, – а вы занимаетесь готовкой. Ваш друг – это интерпретатор (переводчик) для интерпретируемой версии рецепта. Компилируемые языки Компилируемые языки сразу переводятся в машинный код, который может выполнить процессор. В результате они выполняются быстрее и эффективнее, чем интерпретируемые языки. Кроме того, в таких языках разработчик лучше контролирует аппаратные средства (управление памятью, использование ЦП и т.д.). Компилируемым языкам требуется дополнительный этап «сборки», при котором их сначала компилируют вручную. Каждый раз при внесении изменений вам нужно будет «пересобирать» программу. Вернемся к примеру с хумусом. Перевод рецепта делался до того, как попал к вам в руки. Если автор рецепта захочет изменить тип оливкового масла, то весь рецепт придется переводить заново, а затем повторно отправлять вам. Примеры истинных компилируемых языков: C, C++, Erlang, Haskell, Rust и Go. Интерпретируемые языки Интерпретаторы проходятся по каждой строке программы и выполняют все команды. Если автор из нашего примера захочет заменить оливковое масло, то он просто зачеркнет старую запись и добавит новую. А затем ваш друг-переводчик сразу увидит это изменение и переведет его вам. Интерпретируемые языки гораздо медленнее компилируемых. Но с появлением JIT-компиляции (динамической компиляции) эта разница начинает сокращаться. Примеры популярных интерпретируемых языков: PHP, Ruby, Python и JavaScript. Небольшое пояснение В большинстве языков программирования есть компилируемые и интерпретируемые реализации, а сам язык необязательно относится только к компилируемым или интерпретируемым. Но для простоты и удобства их принято относить к тому или иному типу. Например, Python можно выполнять как компилируемую программу или интерпретируемый язык в интерактивном режиме. А большинство инструментов командной строки, интерфейсов командной строки и оболочек чисто теоретически относятся к интерпретируемым языкам. Плюсы и минусы Плюсы компилируемых языков Обычно программы, скомпилированные в машинный код, выполняются быстрее интерпретируемых. Это связано с тем, что при переводе кода в процессе его выполнения увеличивается потребление ресурсов, что, в свою очередь, замедляет программу. Минусы компилируемых языков Основные недочеты компилируемых языков: нужно больше времени для завершения полной компиляции перед тестированием; сгенерированный двоичный код зависит от платформы. Плюсы интерпретируемых языков Интерпретируемые языки более гибкие и чаще предлагают такие возможности, как динамическая типизация и меньший размер программы. Кроме того, исходный код программы выполняют интерпретаторы, поэтому сам код не зависит от платформы. Минусы интерпретируемых языков Самый главный недочет этих языков – скорость выполнения. Она обычно ниже, чем в компилируемых языках.
img
Вы используете систему на основе Ubuntu и просто не можете подключиться к своей сети? Вы будете удивлены, сколько проблем можно исправить простым перезапуском. Перезагрузка сети в Ubuntu с помощью командной строки Если вы используете Ubuntu Server Edition, вы уже находитесь в терминале. Если вы используете настольную версию, вы можете получить доступ к терминалу с помощью сочетания клавиш Ctrl + Alt + T в Ubuntu. Теперь у вас есть несколько команд для перезагрузки сети в Ubuntu. Некоторые (или, возможно, большинство) упомянутые здесь команды должны быть применимы для перезапуска сети в Debian и других дистрибутивах Linux. Network manager service Это самый простой способ перезагрузить сеть с помощью командной строки. Это эквивалентно графическому способу сделать это (перезапускает службу Network-Manager). sudo service network-manager restart Значок сети должен на мгновение исчезнуть, а затем снова появиться. systemd Второй способ – это команда systemctl, которая гораздо более универсальна, чем service. sudo systemctl restart NetworkManager.service Значок сети снова должен исчезнуть на мгновение. Чтобы проверить другие параметры systemctl, вы можете обратиться к его справочной странице. nmcli Это еще один инструмент для работы с сетями на компьютере с Linux. Это довольно мощный инструмент, и многие системные администраторы предпочитают его, поскольку он прост в использовании. Этот метод состоит из двух шагов: выключить сеть, а затем снова включить ее. sudo nmcli networking off Сеть отключится и значок исчезнет. Чтобы включить его снова: sudo nmcli networking on Вы можете проверить справочную страницу nmcli для большего количества вариантов. ifup & ifdown Эти команды управляют сетевым интерфейсом напрямую, изменяя его состояние на состояние, при котором он может или не может передавать и получать данные. Это одна из самых известных сетевых команд в Linux. Чтобы закрыть все сетевые интерфейсы, используйте ifdown, а затем используйте ifup, чтобы снова включить все сетевые интерфейсы. Хорошей практикой было бы объединить обе эти команды: sudo ifdown -a && sudo ifup -a nmtui Это еще один метод, часто используемый системными администраторами. Это текстовое меню для управления сетями прямо в вашем терминале. nmtui Это должно открыть следующее меню: Обратите внимание, что в nmtui вы можете выбрать другой вариант, используя клавиши со стрелками вверх и вниз. Выберите Activate a connection Нажмите Enter. Должно открыться меню с соединениями. Далее, выберите сеть со звездочкой (*) рядом с ней и нажмите Enter. Это должно деактивировать это соединение. Выберите соединение, которое вы хотите активировать Нажмите Enter, соединение должно снова стать активным. Дважды нажмите Tab чтобы выбрать пункт Back Нажмите Enter, это вернет вас в главное меню. Выберите Quit для выхода Это должно закрыть приложение и вернуть вас в ваш терминал. Перезапуск сети в Ubuntu графически Это, конечно, самый простой способ перезапустить сеть для пользователей настольных компьютеров Ubuntu. Если это не работает, вы можете сделать это из командной строки как было описано в предыдущем разделе. Чтобы открыть окно управления сетью, щелкните правой кнопкой мыши значок сети в правом верхнем углу и найдите сетевое соединение, которое вы хотите перезагрузить, затем нажмите «Выключить». Значок сети исчезнет. Чтобы снова включить сеть, щелкните левой кнопкой мыши в правом верхнем углу стрелку вниз, найдите сетевой интерфейс и нажмите «Подключиться». Готово!
img
Одиннадцатая часть тут. Если у вас есть сеть, подобная той, что показана на рисунке 1, и Вам нужно чтобы А распространятл тот же контент в G, H, M и N, как бы вы это сделали? Вы можете либо сгенерировать четыре копии трафика, отправив по одному потоку на каждый из приемников с помощью обычной (одноадресной - unicast) переадресации, либо каким-то образом отправить трафик на один адрес, который сеть знает для репликации, чтобы все четыре хоста получили копию. Этот последний вариант называется многоадресной рассылкой (multicast), что означает использование одного адреса для передачи трафика нескольким получателям. Ключевая проблема, решаемая в многоадресной рассылке, заключается в том, чтобы пересылать и реплицировать трафик по мере его прохождения через сеть, чтобы каждый получатель, заинтересованный в потоке, получал копию. Важно: набор устройств, заинтересованных в получении потока пакетов от источника многоадресной рассылки, называется группой многоадресной рассылки. Это может быть немного запутанным, потому что адрес, используемый для описания многоадресного потока, также называется группой многоадресной рассылки в некоторых ситуациях. Эти два применения практически взаимозаменяемы в том, что набор устройств, заинтересованных в получении определенного набора пакетов многоадресной рассылки, присоединится к группе многоадресной рассылки, что, по сути, означает прослушивание определенного адреса многоадресной рассылки. Важно: в случаях, когда многоадресный трафик является двунаправленным, эту проблему гораздо сложнее решить. Например, предположим, что существует требование создать группу многоадресной рассылки с каждым хостом в сети, показанной на рисунке 2, кроме N, и далее, чтобы любая многоадресная рассылка, переданная по адресу группы многоадресной рассылки, доставлялась каждому узлу в группе многоадресной рассылки. Ключевая проблема для решения многоадресной рассылки может быть разбита на две проблемы: Как узнать, какие устройства хотели бы получить копию трафика, передаваемого в группу многоадресной рассылки? Как вы определяете, какие устройства в сети должны реплицировать трафик и на каких интерфейсах они должны отправлять копии? Одним из возможных решений является использование локальных запросов для построения дерева, через которое многоадресный трафик должен передаваться по сети. Примером такой системы является разреженный режим (Sparse Mode) в Protocol Independent Multicast (PIM). В этом процессе каждое устройство отправляет сообщение соединения для многоадресных потоков, которые его интересуют; эти соединения передаются вверх по потоку в сети до тех пор, пока не будет достигнут отправитель (хост, отправляющий пакеты через многоадресный поток). Для иллюстрации этого процесса используется рисунок 2. На рисунке 2: A посылает некоторый трафик в группу многоадресной рассылки (адрес) - назовем его Z. N хотел бы получить копию Z, поэтому он посылает запрос (соединение) своему вышестоящему маршрутизатору D для копии этого трафика. D не имеет источника для этого трафика, поэтому он посылает запрос маршрутизаторам, к которым он подключен, на копию этого трафика. В этом случае единственный маршрутизатор D отправляет запрос В. При каждом переходе маршрутизатор, получающий запрос, помещает интерфейс, на котором он получил запрос, в свой список исходящих интерфейсов (Outbound Interface List - OIL) и начинает пересылку трафика, полученного в данной многоадресной группе, полученной через любой другой интерфейс. Таким образом, может быть построен путь от получателя к отправителю трафика -это называется деревом обратного пути. Второй вариант определения того, какие хосты заинтересованы в получении трафика для определенной группы многоадресной рассылки, - через своего рода сервер регистрации. Каждый хост, который хотел бы получить копию потока, может зарегистрировать свое желание на сервере. Есть несколько способов, которыми хост может обнаружить присутствие сервера, в том числе: Обращение с адресом группы многоадресной рассылки как с доменным именем и поиск адреса сервера регистрации путем запроса адреса группы многоадресной рассылки. Построение и ведение списка или сопоставления групп с серверами, отображаемыми в локальной таблице Использование некоторой формы хэш-алгоритма для вычисления регистрационного сервера по адресу группы многоадресной рассылки Регистрации могут отслеживаться либо устройствами на пути к серверу, либо, когда набор приемников и передатчиков известен, сервер может сигнализировать соответствующим устройствам вдоль пути, какие порты следует настроить для репликации и пересылки пакетов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59