По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Какое будущее ждет нас в контакт центрах с точки зрения кастомер сервис (клиентского сервиса)? Как компании создают новые пространства для коммуникации со своими потребителями? Будем говорить про чат боты - будущее клиентского сервиса. На цифрах, кейсах, исследованиях, в том числе социальных, постараюсь рассказать о том, почему в контакт центрах будущего, живых операторов будет меньше, а VoIP (классические телефоны) и CTI (интеграция компьютерных приложений и телефонии) отойдет на второй план. Посмотреть доклад Чат - боты это определенно хайповая история, несмотря на то, что сам хайп сейчас немного поугас. Компании абсолютно разного уровня внедряют чат - ботов: от больших банков, где чат бот органично вписывается в ИТ экосистему и помогает сократить косты на операторов и снизить их загрузку на рутинные операции до маленьких компаний, e-commerce или туристических фирм, где смысл чат - бота скорее сводится к тому, чтобы показать уровень технологичности на ряду с более "аналоговыми" конкурентами. Посмотрим на крупных игроков IT рынка, которые уже бороздят просторы ML/AI в поиске способа доставить счастье своим пользователям, среди них как Zero UI решения, которые вовсе не имеют привычного интерфейса, так и уже вполне рабочие чат боты: Алиса - умный помощник от Яндекс. Это мозги, которые живут почти во многих приложениях Яндекса и в хардварных устройствах. Кстати, по данным Яндекса, в приложении поиска доля голосовых запросов на октябрь 2018 года была 20%. Помимо пользовательских сценариев, Алиса сможет решать конкретные бизнес задачи по клиентскому обслуживанию клиентов вашего контакт центра, как автоматизированном режиме, так и в режиме диалога с оператором. Это реализуется с помощью платформы Яндекс.Диалоги - легкий способ связать жителя экосистемы Яндекса с вашим бизнесом, так сказать, не отходя от кассы. Кстати, количество активных пользователей алисы в месяц (MAU) 35 млн. - подумайте, сколько из них ваших потенциальных или текущих клиентов. Про Amazon и их разработки. Вы наверное слышали про виртуальный ассистент Alexa. Внутри алексы используются алгоритмы Amazon Lex А так как Amazon научился монетизировать свои технологии как никто другой, то они продают Amazon Lex в видео фреймворка (интерфейса) для создания приложений - как голосовых так и текстовых, в которых используются алгоритмы понимания естественных языков (NLU), и распознавания речи ASR. О первых я расскажу подробнее в конце статьи. Фреймворк, как заявляют ребята с Амазона, в контексте контакт центров классно подходит для рутинных операций - смена пароля, баланс, встреча с представителем компании и некоторые другие. Бот помощник Олег от банка Тинькоф. Бот помогает управлять кредиткой или дебетовой картой или заказать финансовые документы, снижая нагрузку на живых операторов и помогает закрыть пользовательские сценарии, купить билеты в кино и забронировать столик в ресторане. Тут можно отметить 2 самых очевидных пункта, которые дает бот: Ретеншн (вовлеченность) пользователей. Экосистема с элементами фана повышает вовлеченность к бренду и втягивает пользователей в экосистему. Билеты в кино, скидки, столики, переводы, а еще и голосом с ботом, который может ответить что то смешное или даже грубое, что насмешит друзей и спровоцирует цепочку рассылки диалога друзьям. Из этого вытекает следующий пункт: Виральность - распространяемость контента. На старте бот Тинькоф отвечал пользователям весьма неоднозначно. Например, на старте, попросив "сотку" у банка вы рисковали получить неплохую ответочку: Этот ответ массово распространился по социальным сетям. Это и есть та самая виральность. Вообще много мнений и обсуждений, касаемо чат ботов: начиная от того, что рынок еще не готов и сама технология бесполезна, заканчивая тем, что люди не любят общаться с чат ботами. Если два первых барьера мы с вами обсудили, то про второй я хочу поговорить немного подробнее. Блок про поколение Z - почему он в соц. сетях и не любит голос Впервые в истории, в 2011 в UK заметили, что объем телефонных звонков упал на 10%. При более детальном анализе было обнаружено, что максимально влияющая на падение показателя когорта пользователей - это люди 16 - 24 лет, которые предпочитают текстовую коммуникацию. К обеспокоенности провайдеров, масла в огонь подлил государственный медиарегулятор Ofcom (управление по коммуникациям), отчитавшись - 96% британцев в возрасте 16 - 24 используют текстовые сообщения каждый день. Итак, кто эта группа - 16 -24? Условно говоря, это люди рожденные после 1995 по 2012 года, и поздние Z - рожденные после 2000. Частично, тенденции к цифровизации и ухода в онлайн начали проявляться и у Миллениалов или, как принято их называть Поколение Y. Это люди рожденные с 1981 и до 1996 года. Несколько факторов, которые характеризуют поколение Z: Поколение Z очень целеустремленны. как пишут в исследованиях, это, "most success oriented". Взросление в процессе рецессии, войны, террористических атак, трудные времена на территории РФ. Зачастую, им приходилось наблюдать за борьбой родителей в трудные времена. Масла в огонь подливали миллениалы, полностью зацикленные на карьере. Настроение на успех на выходе дает следующий пункт, пусть и сомнительный - многозадачность. Многозадачность. Поколение Z чувствует себя спокойнее, выполняя несколько задач одновременно. Запостить фотографию в инстаграм, написать друзьям, почитать новости на медузе, сделать фильтра в снэпчате, погонять слова в скаенге. Мы не говорим об эффективности подобных активностей (которая по моему мнению, околонулевая), мы говорим про сам посыл. Тут и возникает важный нюанс - в контексте решения многозадачности, Z, решая свои вопросы с компанией, у которой они берут услугу, предпочтут отправить сообщение в бот в телеграмме или в приложении и ждать ответа, чем висеть на телефоне, холде, ждать ответа оператора и просто говорить голосом. Но это не главная причина. Важнейшей является то, что поколение Z нативно вросло в digital. Нативно в digital. Z находятся в цифровом пространстве полностью. Мессаджинг (текстинг), мемы, фотографии, лайки, обсуждения, снэпчаты - среда, в которой они существуют. И в ней, телефонному звонку, да и голосовой коммуникации в целом остается все меньше и меньше места. Соответственно, Z ожидают, что диджитал будет окружать их везде - решить проблемы с банком, заказать услугу, купить товар или еду, путешествия и прочее. Не давая им возможности обратиться в диджитал, мы рискуем потерять эту аудиторию. Существует множество других характеристик, которые прямо или косвенно влияют на стремление Z к цифре: Конфиденциальность - Z очень ценят свою конфиденциальность. Представьте Z, который едет в полном автобусе, звонит в контакт центр, где его просят назвать кодовое слово? Кажется, он будет слегка сконфужен Z легко принимают новое Вот такие они, эти ребята в гучи, суприм и кроссовках на высокой платформе. Давайте закрепим и посмотрим, что об этом думают большие компании. Пруфы того, что это важно В феврале 2018 года в Токио консалтинговая компания Гартнер отчиталась - к 2020 году 25% всех клиентских итераций будут происходить через VCA (virtual customer assistant), если переводить дословно - виртуальных клиентских помощников, или чат ботов, в контексте моего доклада и контакт - центра. Джин Альварез, вице - президент в Гартнер отчитался, что более чем половина крупного энтерпрайза уже начали инвестировать и исследовать виртуальных помощников, в разрезе решения стандартных вопросов с последующей эскалацией сложных на агента. Вот цитата Джина (Gene Alvarez): "As more customers engage on digital channels, VCAs are being implemented for handling customer requests on websites, mobile apps, consumer messaging apps and social networks" Перевод: С погружением клиентов в цифровые каналы коммуникации, все больше VCA (виртуальные клиентские помощники) внедряются для обработки клиентских запросов на сайтах, мобильных приложениях, мессенджерах и соц. сетях" Это важно, так как мы обсудили ранее, для подрастающего платежеспособного поколения Z - цифровые каналы это нативные вещи. Помимо прочего, важная цифра: организации, использующие VCA, в среднем, смогли сократить количество звонков, операторских чатов и писем на 70% и срезали косты на телефонию в среднем на 33%. В отчете так же было отмечено увеличение общего уровня удовлетворенности клиентов. Я не стану добавлять это в статью, так как Гартнер поленился рассказать, какие метрики для этого они посчитали и как измерили. Дальше. Ребята из Juniper Research еще в 2017 году говорили, что чат - боты - гейм чейнджер для банков и здравоохранения. Джунипер прогнозирует, что количество клиентских взаимодействий с чат-ботами в здравоохранении увеличится с 12% до 75% к 2022 году, а в банковском секторе достигнет 90% к этому времени. Автор исследования Лоурен Фои (Lauren Foye) объясняет: "We believe that healthcare and banking providers using bots can expect average time savings of just over 4 minutes per enquiry, equating to average cost savings in the range of $0.50-$0.70 per interaction. As Artificial Intelligence advances, reducing reliance on human representatives undoubtedly spells job losses." Перевод: Мы считаем, что банки и компании в области здравоохранения, используя чат- боты могут сэкономить более 4 минут на один клиентский запрос. Это примерно 50 - 70 центов за одну итерацию. 4 минуты на обращении что примерно ровняется $0.5 - $0.7. Лоурен пугает нас тем, что развитие AI (искусственного интеллекта) так или иначе приведет к потере работы многими людьми. Спасибо Лоурен, тебя это тоже коснется. Кстати, про искусственный интеллект. А точнее про одно из его направлений NLP (Natural Language Processing), или говоря по русски, обработку естественного языка. Про natural language processing (NLP). Обработка естественного языка Кратко пробежимся по технологии, которая драйвит эту отрасль. NLP - обработка естественного языка. Это направление породила одна проблема: компьютеры прекрасно справляются со структурированными данными, таблицами, приведенными к единообразию датасетами, но мы с вами общаемся не методами структурами, а словами. Тут и появилась идея научить машины понимать живой человеческий язык. В рамках решения этой задачи, как и в любой другой задаче машинного обучения, принято разбивать задачу на последовательность подзадач. Это называется пайплайн, он же конвейер процессов, которые необходимо выполнить. Давайте попробуем кратко разобраться на примере текста, взятого из википедии про Лондон: London is the capital and most populous city of England and the United Kingdom. Standing on the River Thames in the south east of the island of Great Britain, London has been a major settlement for two millennia. It was founded by the Romans, who named it Londinium. Тут есть несколько сегментов полезной информации про Лондон, где он находится и кем основан. 1. Дробим на предложения Первый этап пайплайна - дробим текст на предложения. Самое простое - по знакам препинания. Но современные алгоритмы используют более хитрые способы. Вот что у нас получилось: London is the capital and most populous city of England and the United Kingdom. Standing on the River Thames in the south east of the island of Great Britain, London has been a major settlement for two millennia. It was founded by the Romans, who named it Londinium. Три отдельных смысловых блока. Отлично. 2. Токенизация Оно же выделение слов. Так как мы уже разбили текст на предложения, берем первое и дробим - алгоритм прост - разбиение по пробелам или знакам препинания "London", "is", "the", "capital", "and", "most", "populous", "city", "of", "England", "and", "the", "United", "Kingdom", "." 3. Части речи Теперь смотрим на каждое слово отдельно и понимаем, что это - существительное, глагол, прилагательное или еще что то. Готовые фреймоврки обучены на на миллионах слов и учитывают слова стоящие рядом, для повышения точности определения. Получаем: London - имя собственное is - глагол the - артикль capital - существительное and - союз most - наречие populous - прилагательное 4. Лемматизация Лемматизация (англ. lemmatization) - приведение словоформы к ее первоначальной словарной форме (лемме). По факту, это отсечение окончаний и использование основой формы. Например, в русском языке словарной формой считается: существительные - именительный падеж, единственное число (руками - рука) глаголы - инфинитивная форма (искали - искать) прилагательные - единственное число, именительный падеж, мужской род (телекоммуникационными - телекоммуникационный) В NLP лемматизация обычно выполняется простым поиском форм в таблице. Вот что мы получаем: London - имя собственное (уже начальная форма) is - глагол (превращается в be) the - артикль (уже начальная форма) capital - существительное (уже начальная форма) and - союз (уже начальная форма) most - наречие (уже начальная форма) populous - прилагательное (уже начальная форма) 5. Стоп слова В нашем примере мы рассматриваем англоязычный фрагмент текста. Поэтому, из него нужно убрать слова, которые создают избыточный шум - артикли, например "and", "the", "a". Обычно, это делается по готовым таблицам. Снова смотрим на наше предложение: London - имя собственное (уже начальная форма) is - глагол (превращается в be) the - артикль (уже начальная форма) capital - существительное (уже начальная форма) and - союз (уже начальная форма) most - наречие (уже начальная форма) populous - прилагательное (уже начальная форма) 6. Парсинг зависимостей Следующим шагом нам важно понять взаимосвязь слов в предложении. Нужно понять, кто является родителем для каждого из токенов (слов) и установить тип взаимосвязи: субъект предложения, свойство, логическая связь, определение и так далее. В результате мы получаем уже почти готовое дерево связей. Логическим продолжением этого шага является группировка токенов по признакам взаимосвязи. Было: London - имя собственное (уже начальная форма) is - глагол (превращается в be) the - артикль (уже начальная форма) capital - существительное (уже начальная форма) and - союз (уже начальная форма) most - наречие (уже начальная форма) populous - прилагательное (уже начальная форма) Стало: London is the capital and most populous city 7. Распознавание именованных сущностей (Named Entity Recognition, NER) Двигаясь по пайплайну мы подходим к самому интересному, на мой взгляд, шагу - распознавание смысла слов. Вы уже заметили, что в нашем предложении встречаются географические сущности, такие как "London", "England" и "United Kingdom". На этом этапе пайплайна мы пониманием что это географический объект и определяем это, наполняя наш текст смыслом. NER алгоритмы хорошо работают с такими объектами как: имена людей; названия компаний; географические обозначения (и физические, и политические); продукты; даты и время; денежные суммы; события. Тут важно отметить, что хорошая NER система это не только словари. Они так же просматривают контекст предложения и окружение каждого конкретного токена. Адекватный NER должен уметь отличить американскую актрису Дакоту Фаннинг от штата Дакота на севере США 8. Разрешение кореференции Если быть кратким, то это решение вопроса с местоимениями, которые во всем тексте означают тот или иной объект. Вернемся к нашему изначальному тексту, который мы разбивали на предложения London is the capital and most populous city of England and the United Kingdom. Standing on the River Thames in the south east of the island of Great Britain, London has been a major settlement for two millennia. It was founded by the Romans, who named it Londinium. Обратите внимание на "It was founded by the Romans, who named it Londinium." Это было основано римлянами. Это? Что это? Вот и задача для для алгоритмов связать, что Это в данном контексте - это = Лондон. 9. Итог. Полный пайплайн NLP Итак, подытожим. Чтобы получать смыслы из речи человека текст проходит мощную обработку в конвейере NLP. Помимо прочего, NLP можно юзать и в голосовых технологиях, преобразуя речь в текст в рамках ASR механизмов и снова пропуская через пайплайн NLP. Суммарно, чтобы читать между строк и получать смысла информация перемалывается через эти 9 шагов (где то их может быть меньше, а где то в другом порядке, например): Дробим на предложения Токенизация Части речи Лемматизация Стоп слова Парсинг зависимостей Группировка токенов (существительных) Распознавание именованных сущностей (Named Entity Recognition, NER) Разрешение кореференции Кто делает? Продуктов много. Есть как тривиальные инструменты создания блок - схем (статичных алгоритмов обработки запросов), так и интерфейсы с продвинутым NLP, о котором мы поговорили ранее, есть энтерпрайзные решения, есть и решения для SMB. Не делая рекламы, поговорим про бесплатные решения. Rasa.com RASA.com Ребята дают бесплатный фреймворк для быстрого старта. Есть энтерпрайз коммерческие тарифы, которые дадут SLA и не комьюнити бэйзд гарантии. У ребят 0.5 млн загрузок по миру, 3.5 активных участников комьюнити. Схематично парни из раса.ком обозначили принципы работы их чат бота как на картинке: Можно попробовать абсолютно бесплатно, дав плечо фреймворку в свои данные. Итоги С развитием машинного обучения цифровое будущее становится все ближе и ближе. На руку прогрессу и развитию роботизации в клиентском сервисе играют поколенческие факторы, общие характеристики нового поколения, тренды и даже политическая обстановка. Будьте первыми, будьте актуальными, будьте технологичными и свежими.
img
Первые два типа систем (IPS - intrusion prevention system & IDS - intrusion detection system) появились в 1986 году как результат научной работы, и их базовые принципы до сих пор используются повсюду – в системах предотвращения и обнаружения, в NGIPS и NGFW – словом во всех системах, которые были упомянуты в заголовке. В статье мы расскажем, как IPS/IDS изменялись со временем, с какими проблемами сталкивались разработчики и что можно от них ожидать в будущем. Итак, как мы уже сказали, системы обнаружения угроз и системы предотвращения угроз появились после написания научной статьи некой Дороти Деннинг, и называлась эта статья «Модель обнаружения угроз», и благодаря этой статье Стэнфордский Исследовательский Институт разработал нечто под названием Intrusion Detection Expert System/ (IDES). Вольно это можно перевести как экспертная система обнаружения угроз. Она использовала статистическое обнаружений аномалий, сигнатуры и хостовыепользовательские профили для детектирования редискового поведения у систем. Таким образом, она могла определить если такие протоколы как FTP или HTTP были использованы некорректно и даже могла определять атаки с отказом обслуживания (DoS). 2000 - 2005: Обнаружение предпочтительнее предотвращения В ранних 2000х системы обнаружения считались хорошим тоном. А до этого межсетевые экраны были очень эффективны для ландшафта угроз безумных 90х годов. Фаерволы обрабатывали трафик относительно быстро, так как в них не было глубокой инспекции пакетов, то есть вы не знали, что это за трафик приходит к вам в сеть – фаерволы реагировали только на установленные в правилах (листах контроля доступа) порты, протоколы иили сетевые адреса. В начале 2000х появились новые атаки, такие как SQL-инъекции и прочие, и они моментально завоевали место на подиуме в арсенале взломщиков. И вот на этом этапе IDS системы и пригодились – а время систем предотвращения угроз еще не настало. В то время некоторые организации боялись использовать IPS так как такая система потенциально могла заблокировать безвредный трафик. Как мы более подробно описывали в нашей статье про IPS и IDS, IPS ставится «в разрыв» и блокирует подозрительные соединения, полностью разрывая коннект и связь между отправляющей и принимающими сторонами. Но как вы могли понять, такое соединение могло стать подозрительным просто по причине какой-то аномалии в подключении и грубо говоря «глюке». Таким образом, IDS системы просто сообщали о такой аномалии и ничего не блокировали, чтобы сисадмин мог среагировать и проверить - правда ли это что-то плохое или же это просто доброкачественная аномалия. По этой причине в то время рынок для систем предотвращения угроз был настолько мал, что существовало всего несколько IPS вендоров. То есть идеей было что нужно пропускать любой трафик, а разберемся, мол, уже опосля – риск потери хорошего трафика был страшнее угрозы взлома. В это время сигнатуры писались для обнаружения эксплойтов, но не уязвимостей – то есть для каждой уязвимости было 100 разных способов эксплойта. Как только злоумышленники находили уязвимость, они заставляли разработчиков IDS исходить потом и писать сотни разных сигнатур для эксплойтов – все только для того, чтобы система обнаружения отправила тревогу админу. И вендоры IDS хвастались количеством имеющихся у них сигнатрур, будто это выгодно отличало их от конкурентов – но как вы понимаете, это не было корректным критерием оценки. В общем и целом, механизмы тогда насчитывали следующее полчище методов – совпадение по паттернам, строкам, аномалиям и даже эвристический анализ. Принятие IPS - год 2005 Когда в 2005 году системы предотвращения начали становится популярнее, большее количество вендоров стали соревноваться за место под солнцем на растущем рынке, и перестали хвастать самыми длинными сигнатурами. Опять же, по причине установки «в разрыв», клиенты боялись, что все эти сигнатуры будут замедлять сеть, так как каждое соединение должно быть пропущено через них. Таким образом, было решено сменить вектор написания сигнатур на другие – те, которые будут базироваться не на эксплойте, а на самой уязвимости. Было получено опытным путем, что если в системе более 3500 сигнатур, то это будет заметно сказываться на производительности. Сегодня производители все еще помещают в систему как новые сигнатуры, так и некую классику уязвимостей, которую злоумышленники могут использовать. 2006 – 2010: Настает время производительных IPS/IDS комбайнов Вендоры, которые предлагали гибридные системы, быстро обошли конкурентов – они предлагали гораздо более производительные системы, вплоть до 5 Гбитсек, и могли мониторить сегментированные сети, DMZ, серверные фермы с веб-приложениями и площадь внутри периметра. К примеру, сегодня производительные IPS устройства легко дают более 40 гигабит в секунду. В итоге, клиенты начали массово переходить на системы предотвращения вторжений и рынок начал очень быстро расти. А когда появился стандарт безопасности PCI DSS начал требовать от организаций поддержу оплаты картами установки или IDS, или МСЭ с возможностью фильтрации веб-приложений, очень много организаций купили гибридные системы. И прошло уже много лет с момента рождения технологии, так что технологию порядочно оттюнинговали и подрихтовали, так что, ложно-положительных срабатываний стало гораздо меньше. Однако, в этот же момент начала расползаться эпидемия ботнетов. И самым популярным способом стало помещение зловредных приложений на популярных сайтах, и, если какой-нибудь браузерный плагин вроде Java или Adobe Flash был с уязвимостью, при клике на соответствующий документ вредонос тихонько скачивался на компьютер. Кроме того, в 2008 году злоумышленники активно использовали перенаправляющие ссылки на вредоносные сайты, так что IDS/IPS вендоры начали также добавлять списки IP-адресов вредоносных командных центров и их веб-адресов – если эти ресурсы содержали на себе вредоносы. 2011 – 2015: Системы предотвращения вторжений следующего поколения В эти годы был переломный момент для вендоров в сфере ИБ – так как они стали выпускать системы предотвращения угроз следующего поколеня, которые включали в себя такие фичи как контроль пользователей и приложений. Таким образом, традиционный IPS смотрит в сетевой трафик на предмет известных аттак и что-то делает с этим трафиком, в зависимости от модели развертывания, а IPS следующего поколения делает тоже самое, но кроме того он покрывает гораздо больше протоколов (вплоть до 7 уровня) для защиты от большего количества атак. Кроме того, он также позволяет гибко контролировать доступ к приложениям – то есть, например, чтобы можно было лайкать фотки в VK, но нельзя было их заливать. И более того – чтобы это могли делать только определенные группы пользователей. Следующее дополнение к IDS/IPS системам появилось после взлома RSA (компании, которая занимается мультифакторной аутентификацией) в 2011 году – тогда новостные ресурсы назвали это APT (Advanced Persistent Threat)-атакой, то есть сложной постоянной угрозой. Позже было сказано, что это была фишинговая атака, в которой содержался документ с вредоносом внутри. Клиенты стали спрашивать ИБ вендоров, могут ли они их защитить от подобных вещей, если у вендора нет сигнатуры на данный конкретный вредонос, и ответом вендоров было предоставление такой фичи как эмуляция и песочницы – но это потребовало около 18 месяцев для большинства вендоров. Так что компании FireEye и Fidelis оказались в фазе бурного роста, так как они предоставляли такие технологии песочницы, до которых всем было очень далеко. Только подумайте, песочницы впервые за всю историю могли обнаружить до сих пор неизвестную атаку нулевого дня. Как работает песочница: неизвестный исполняемый файл или документ сначала попадает в песочницу, где он запускается в разных операционных системах и алгоритм пытается имитировать действия пользователя – клавиши стучат, мышка елозит и кликает, время прокручивается – все в надежде на то, что вредонос вылупится и себя покажет. Вендоры пошли чуть дальше. Если вредонос себя проявлял, то его хэш-сумма (MD5 или SHA) сохранялась для того, чтобы в будущем всегда ловить такие файлы. Соответственно, если другой клиент на такой же системе получал тот же файл – то он не пропускался в сеть и звучала тревога. Такие системы получили название Next Generation Firewall – межсетевых экранов следующего поколения. Конечно, Гартнер использовал этот термин еще в 2003 году и предсказал, что они межсетевые экраны будут содержать внутри себя сложную IPS систему, но индустрия не принимала подобные устройства вплоть до 2013 года. 2018 – и далее: Межсетевые экраны следующего поколения Сегодня большинство организаций используют NGFW и список их фич только растет. Так как эти МСЭ отличаются различными фичами, организациям придется выбирать в зависимости от точности поставленной задачи и их требований. Опять же, есть за и против МСЭ следующего поколения: за – нужно купить только пару железяк вместо почти десятка. Против – это все один вендор, и его мудрость ограничена, то есть не существует лучшего вендора, который знал бы все и сразу. Таким образом очень неплохой практикой является комбинировать устройства защиты от разных производителей и разбавлять их «мудрость» между собой. Важно помнить, что любое устройство защиты всегда хорошо только настолько, насколько богаты знания и опыт, стоящие за этим устройством. Есть даже специальный термин – Threat Intelligence. Такие системы и базы знаний есть у всех больших ИБ вендоров. Более того, они есть полностью бесплатные и открытые – например, VirusTotal. Сегодня ландшафт угроз постоянно меняется и большинство вендоров сконцентрировано на машинном обучении, чтобы алгоритмы анализа файлов всегда улучшались, а количество шума и ложных срабатываний стремилось к минимуму. Но это бесконечная игра в кошки-мышки, и на каждый ход производителей хакеры придумают что-нибудь новое, что позже смогут нейтрализовать вендоры.
img
Микросервисы – это шаблон сервис-ориентированной архитектуры, в котором приложения создаются в виде наборов небольших и независимых сервисных единиц. Такой подход к проектированию сводится к разделению приложения на однофункциональные модули с четко прописанными интерфейсами. Небольшие команды, управляющие всем жизненным циклом сервиса могут независимо развертывать и обслуживать микросервисы. Термин «микро» относится к размеру микросервиса – он должен быть удобным в управлении одной командой разработчиков (5-10 специалистов). В данной методологии большие приложения делятся на крошечные независимые блоки. Что такое монолитная архитектура? Если говорить простым языком, то монолитная архитектура – это как бы большой контейнер, в котором все компоненты приложения соединяются в единый пакет. В качестве примера монолитной архитектуры давайте рассмотрим сайт для электронной торговли. Например, онлайн-магазин. В любом таком приложении есть ряд типовых опций: поиск, рейтинг и отзывы, а также оплаты. Данные опции доступны клиентам через браузер или приложение. Когда разработчик сайта онлайн-магазина развертывает приложение, это считается одной монолитной (неделимой) единицей. Код различных опций (поиска, отзывов, рейтинга и оплаты) находится на одном и том же сервере. Чтобы масштабировать приложение, вам нужно запустить несколько экземпляров (серверов) этих приложений. Что такое микросервисная архитектура? Микросервисной архитектурой называется методика разработки архитектуры, позволяющая создавать приложения в виде набора небольших автономных сервисов для работы с конкретными предметными областями. Такой вариант структурированной архитектуры позволяет организовать приложения в множество слабосвязанных сервисов. Микросервисная архитектура содержит мелкомодульные сервисы и упрощенные протоколы. Давайте рассмотрим пример приложения для онлайн-торговли с микросервисной архитектурой. В данном примере каждый микросервис отвечает за одну бизнес-возможность. У «Поиска», «Оплаты», «Рейтинга и Отзывов» есть свои экземпляры (сервер), которые взаимодействуют между собой. В монолитной архитектуре все компоненты сливаются в одну модель, тогда как в микросервисной архитектуре они распределяются по отдельным модулям (микросервисам), которые взаимодействуют между собой (см. пример выше). Коммуникация между микросервисами – это взаимодействие без сохранения состояния. Каждая пара запросов и ответов независима, поэтому микросервисы легко взаимодействуют друг с другом. Микросервисная архитектура использует федеративные данные. Каждый микросервис имеет свой отдельный массив данных. Микросервисы и монолитная архитектура: сравнение Микросервисы Монолитная архитектура Каждый блок данных создается для решения определенной задачи; его размер должен быть предельно малым Единая база кода для всех бизнес-целей Запуск сервиса происходит сравнительно быстро На запуск сервиса требуется больше времени Локализовать ошибки довольно просто. Даже если один сервис сломается, другой – продолжит свою работу Локализовать ошибки сложно. Если какая-то определенная функция не перестает работать, то ломается вся система. Чтобы решить проблему, придется заново собирать, тестировать и развертывать приложение. Все микросервисы должны быть слабо связанными, чтобы изменения в одном модуле никак не влияли на другой. Монолитная архитектура тесно связана. Изменения в одному модуле кода влияет на другой Компании могут выделять больше ресурсов на самые рентабельные сервисы Сервисы не изолированы; выделение ресурсов на отдельные сервисы невозможно Можно выделить больше аппаратных ресурсов на самые популярные сервисы. В примере выше посетители чаще обращаются к каталогу товаров и поиску, а не к разделу оплат. Таким образом, будет разумнее выделить дополнительные ресурсы на микросервисы каталога товаров и поиска Масштабирование приложения – задача сложная и экономически не выгодная Микросервисы всегда остаются постоянными и доступными Большая нагрузка на инструменты для разработки, поскольку процесс необходимо запускать с нуля Федеративный доступ к данным, благодаря чему под отдельные микросервисы можно подбирать наиболее подходящую модель данных Данные централизованы Небольшие целевые команды. Параллельная и ускоренная разработка Большая команда; требуется серьезная работа по управлению командой Изменения в модели данных одного микросервиса никак не сказывается на других микросервисах Изменения в модели данных влияют на всю базу данных Четко прописанный интерфейс позволяет микросервисам эффективно взаимодействовать между собой Не предусмотрено Микросервисы делают акцент на продуктах (модулях), а не проектах Сосредоточены на проекте в целом Отсутствие перекрестных зависимостей между базами кода. Для разных микросервисов можно использовать разные технологии Одна функция или программа зависит от другой Сложности в работе с микросервисами Микросервисы полагаются друг на друга, поэтому необходимо выстроить коммуникацию между ними. В микросервисах создается больше модулей, чем в монолитных системах. Эти модули пишутся на разных языках, и их необходимо поддерживать. Микросервисы – это распределенная система, так что, по сути, мы имеем дело со сложной системой. В разных сервисах используются свои механизмы; для неструктурированных данных требуется больший объем памяти. Для предотвращения каскадных сбоев необходимо эффективное управление и слаженная командная работа. Трудно воспроизвести ошибку, если она пропадает в одной версии и вновь появляется в другой. Независимое развертывание и микросервисы – вещи слабо совместимые. Микросервисная архитектура требует большего количества операций. Сложно управлять приложением, когда в систему добавляются новые сервисы. Для поддержки всевозможных распределенных сервисов требуется большая команда опытных специалистов. Микросервисы считаются дорогостоящими решениями, поскольку для разных задач создаются и поддерживаются разные серверные пространства. Сервис-ориентированная архитектура (СОА) или микросервисы СОА-сервисы (SOA - Service-oriented architecture) поддерживаются через реестр, который считается перечнем файлов каталога. Приложения должны найти сервис в реестре и вызвать его. Иначе говоря, СОА похож оркестр: каждый музыкант играет на своем инструменте, а всеми артистами управляет дирижер. Микросервисы – это разновидность СОА-стиля. Приложения создаются в виде набора небольших сервисов, а не цельной программы. Микросервисы похожи на труппу артистов: каждый танцор знает свою программу и не зависит от других. Даже если кто-то забудет какое-то движение, вся труппа не собьется с ритма. Теперь давайте поговорим о различиях между СОА и микросервисах. Параметр СОА Микросервисы Тип проектирования В СОА компоненты приложения открыты для внешнего мира; они доступны в виде сервисов Микросервисы – это часть СОА. Такая архитектура считается реализацией СОА Зависимость Подразделения – зависимы Они не зависят друг от друга Размер приложения Размер приложения больше, чем у обычных программ Размер приложения всегда небольшой Стек технологий Стек технологий ниже, чем у микросервисов Стек технологий очень большой Сущность приложения Монолитная Полностековая Независимость и ориентированность СОА-приложения создаются для выполнения множества бизнес-задач Создаются для выполнения одной бизнес-задачи Развертывание Процесс развертывания растянут по времени Несложное развертывание, на которое тратится меньше времени Рентабельность Более рентабельно Менее рентабельно Масштабируемость Меньше, чем у микросервисов Высокая масштабируемость Бизнес-логика Компоненты бизнес-логики хранятся внутри одного сервисного домена. Простые проводные протоколы (HTTP с XML JSON). API управляется с помощью SDK/клиентов Бизнес-логика распределена между разными корпоративными доменами Микросервисные инструменты Wiremock – тестирование микросервисов WireMock – это гибкая библиотека для создания заглушек и сервисов-имитаций. В ней можно настроить ответ, который HTTP API вернет при получении определенного запроса. Также может использоваться для тестирования микросервисов. Docker Docker – это проект с открытым кодом для создания, развертывания и запуска приложений с помощью контейнеров. Использование такого рода контейнеров позволяет разработчикам запускать приложение в виде одного пакета. Кроме того, в одном пакете могут поставляться библиотеки и другие зависимости. Hystrix Hystrix – это отказоустойчивая Java-библиотека. Данный инструмент предназначен для разделения точек доступа к удаленным сервисам, системам и сторонним библиотекам в распределенной среде (микросервисах). Библиотека улучшает всю систему в целом, изолируя неисправные сервисы и предотвращая каскадный эффект от сбоев. Лучшие примеры использования микросервисной архитектуры Отдельное хранение данных для каждого микросервиса. Поддержание кода на едином уровне зрелости Отдельная сборка для каждого микросервиса. Заключение Микросервисы – это СОА-шаблон, в котором приложения создаются как набор малых и независимых серверных единиц. Микросервисная архитектура относится к стилям разработки архитектуры, позволяющим создавать приложение в виде небольших и автономных сервисов для определенных предметных областей. Монолитная архитектура похожа на большой контейнер, в котором все компоненты приложения собраны в один пакет. Каждый блок приложения в микросервисе имеет предельно малый размер и выполняет определенную функцию. Большая база кода в монолитной архитектуре замедляет процесс разработки. Выход новых версий может растянуться на месяцы. Поддерживать такую базу кода довольно сложно. Существует 2 типа микросервисов: Stateless (без сохранения состояния) и Stateful (с отслеживанием состояния) Микросервисы на Java полагаются друг на друга; они должны взаимодействовать между собой. Микросервисы позволяют в большей степени сконцентрироваться на определенных функциях или потребностях бизнеса. Сервисно-ориентированная архитектура, или СОА, – это усовершенствованные распределенные вычисления, основанные на проектной модели запроса/ответа в синхронных или асинхронных приложениях. Компоненты приложения в СОА открыты для внешнего мира и представлены в виде сервисов; микросервисы считаются частью СОА. Это реализация СОА. К популярным микросервисным инструментам относятся Wiremock, Docker и Hystrix.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59