По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Отчетность. Важная штука, не правда ли? Особенно в крупном контакт - центре, где контроль за SLA и работой тысяч операторов является критическим бизнес - узлом. Ранее, мы рассказывали про UCCE. Это такой большой контакт - центр от Cisco для больших компаний. А сегодня мы поговорим Cisco Unified Intelligence Center (CUIC), как его еще называют “куик". Обзор возможностей, архитектура и термины продукта в статье. Зачем нужен? CUIC позволяет работать с историческими данными и данными реального времени. “Куик" можно установить по модели standalone, когда у вас будет только 1 сервер, или кластеризовать это решение, добавив в него до 8 серверов. В CUIC можно добавлять различные отчеты, в том числе кастомизированные, править отображение отчетов, делать его в формате диаграмм, чартов, делать “пермалинки" (ссылки по web на отчет), дашборды и многие другие функции. Архитектура С точки зрения высокоуровневой архитектуры, CUIC работает вот так: Итак, с точки зрения высокоуровневой архитектуры: Пользователь (супервайзер) через браузер делает обращение в CUIC для генерации отчета; Веб запрос обрабатывается web - сервером в кластере серверов Unified Intelligence Center; Данные “парсятся" черед Data source (датасорс, источник данных); Датасорс предоставляет отчеты реального времени или исторические с UCCE или CVP сервера отчетности; Кстати, подключить CUIC можно и к данным UCCX При подключении к UCCE (в CUIC есть отдельный пункт настройки Data Sources), мы указываем подключение серверу AWDB (Administrative Workstation DB). По факту, это просто SQL - плечо по 1433 порту (если не меняли). Как мы сказали ранее, по факту, CUIC - визуализатор данных из БД источников. Предварительная настройка его в этом и заключается - настроить источники данных (data sources). Разобрались с архитектурой. Теперь давайте посмотрим, как выглядит CUIC. Как выглядит CUIC? Давайте быстро пробежимся по UI интеледженс центра. Форма авторизации весьма стандартная: Чуть раньше в статье мы говорили про создание Data Source для CUIC - источников данных. Вот как этот конфигуратор выглядит в реальности: Тут совершенно ничего сложного. Просто плечо в БД. Теперь про отчеты. Вот так выглядит дашборд в системе. Обратите внимание, на нем преднастроены отчеты, стикеры (позволяющие запинить важные данные, например), фреймы на нужные веб - ресурсы: CUIC начиная с 12 версии В 12 версии Cisco прокачала свои интерфейсы в контакт - центровых продуктах (ну или купила компанию, которая это делает, сами понимаете). Изменения в плоскости интерфейса коснулись так же и агентского рабочего места Finesse. Посмотрите еще раз на скриншот выше. А теперь посмотреть, как изменился UI интерфейс CUIC:
img
Что такое хэш-функция? Хэш-функция принимает входное значение, например, строку данных, и возвращает какое-то значение фиксированной длины. Идеальная хэш-функция должна обладать следующими свойствами: она должна быть очень быстрой; она должна иметь возможность возвращать огромный диапазон хэш-значений; она должна генерировать уникальный хэш для каждого входного значения (без коллизий); она должна генерировать различные хэш-значения для одинаковых входных значений; сгенерированные ей хэш-значения не должны иметь ярко выраженной закономерности в своем распределении. Разумеется, идеальных хэш-функций не бывает, однако каждая хэш-функция максимально старается приблизится к идеалу. Учитывая тот факт, что большинство хэш-функций возвращают значения фиксированной длины и из-за этого диапазон значений ограничен, в принципе это ограничение можно игнорировать. Например, количество возможных значений, которые может вернуть 256-битная хэш-функция, соразмерно количеству атомов во Вселенной. В идеале хэш-функция должна работать без коллизий, иными словами ни одна пара различных входных значений не должна генерировать одно и то же значение хэш-функции. Это является важным условием особенно для криптографических хэш-функций, поскольку коллизии хэшей рассматриваются как уязвимости. И наконец, хэш-функция должна генерировать различные хэш-значения для любого входного значения без возможности их прогнозирования. Например, возьмем следующие два очень похожих предложения: 1. "The quick brown fox." 2. "The quick brown fax." А теперь сравним хэш-значения MD5, сгенерированные для каждого предложения: 1. 2e87284d245c2aae1c74fa4c50a74c77 2. c17b6e9b160cda0cf583e89ec7b7fc22 Для двух похожих предложений были сгенерированы два мало похожих хэша. Такое свойство является полезным как для проверки, так и для криптографии. Это и есть закон распределения: хэш-значения всех входных данных должны быть равномерно распределены без возможности прогнозирования по всему диапазону возможных хэш-значений. Популярные хэш-функции Существует несколько широко используемых хэш-функций. Все они были разработаны математиками и программистами. В процессе их дальнейшего изучения было выявлено, что некоторые из них имеют недостатки, однако все они считаются приемлемыми для не криптографических приложений. MD5 Хэш-функция MD5 генерирует 128-битное хэш-значение. Изначально она была разработана для использования в криптографии, однако со временем в ней были обнаружены уязвимости, вследствие чего для этой цели она больше не подходит. И тем не менее, она по-прежнему используется для разбиения базы данных и вычисления контрольных сумм для проверки передачи файлов. SHA-1 SHA расшифровывается как Secure Hash Algorithm. SHA-1 – это первая версия алгоритма, за которой в дальнейшем последовала SHA-2. В то время как MD5 генерирует 128-битный хэш, SHA-1 создает 160-битный (20 байт). Если представить это число в шестнадцатеричном формате, то это целое число длиной в 40 символов. Подобно MD5, этот алгоритм был разработан для криптографических приложений, но вскоре в нем также были найдены уязвимости. На сегодняшний день он считается более устойчивым к атакам в сравнении с MD5. SHA-2 Вторая версия алгоритма, SHA-2, имеет множество разновидностей. Пожалуй, наиболее часто используемая – SHA-256, которую Национальный институт стандартов и технологий (NIST) рекомендует использовать вместо MD5 и SHA-1. Алгоритм SHA-256 возвращает 256-битное хэш-значение, что представляет собой шестнадцатеричное значение из 64 символов. Хоть это и не самый идеальный вариант, то текущие исследования показывают, что этот алгоритм значительно превосходит в безопасности MD5 и SHA-1. Если рассматривать этот алгоритм с точки зрения производительности, то вычисление хэша с его помощью происходит на 20-30% медленнее, чем с использованием MD5 или SHA-1. SHA-3 Этот алгоритм хэширования был разработан в конце 2015 года и до сих пор еще не получил широкого применения. Этот алгоритм не имеет отношения к тому, что использовался его предшественником, SHA-2. Алгоритм SHA3-256 – это алгоритм с эквивалентной применимостью более раннего алгоритма SHA-256, причем вычисления первого алгоритма занимают немного больше времени, чем вычисления второго. Использование хэш-значений для проверки Как правило, хэш-функции используются для проверки правильности передачи данных. Одним из таких применений является проверка сжатых коллекций файлов, таких как архивные файлы .zip или .tar. Имея архив и его ожидаемое хэш-значение (обычно называемое контрольной суммой), можно выполнить собственное вычисление хэш-функции, чтобы убедиться в целостности полученного вами архива. Например, можно сгенерировать контрольную сумму MD5 для tar-файла в Unix, используя следующие команды: tar cf - files | tee tarfile.tar | md5sum - Чтобы получить хэш MD5 для файла в Windows, используйте команду PowerShell Get-FileHash: Get-FileHash tarfile.tar -Algorithm MD5 Сгенерированную контрольную сумму можно разместить на сайте загрузки рядом со ссылкой на скачивание архива. Получатель, скачав архив, может проверить правильность его получения, выполнив следующую команду: echo '2e87284d245c2aae1c74fa4c50a74c77 tarfile.tar' | md5sum -c где 2e87284d245c2aae1c74fa4c50a74c77 - сгенерированная контрольная сумма, которая была размещена. При успешном выполнении вышеуказанной команды появится статус OK, как показано ниже: echo '2e87284d245c2aae1c74fa4c50a74c77 tarfile.tar' | md5sum -ctarfile.tar: OK
img
В программно-конфигурируемой сети (SDN) происходит разделение плоскости передачи и управления данными, позволяющее осуществить программное управление плоскостью передачи, которое может быть физически или логически отделено от аппаратных коммутаторов и маршрутизаторов. Подобный подход дает большое количество плюсов: Возможность видеть топологию всей сети; Возможность конфигурации всей сети в целом, а не отдельных единиц оборудования; Возможность производить независимое обновление оборудования в сети; Возможность контролировать всей сети из высокоуровневого приложения. SDN сети То есть, основное отличие программно-конфигурируемых сетей - делегация задачи вычисления маршрутов контроллеру (плоскость управления) и оставить функцию передачи пакетов (плоскость передачи данных) на отдельных устройствах (коммутаторы OpenFlow) , что снизит нагрузку на маршрутизатор и увеличит его производительность. Для оценки функциональности SDN-сети с элементами NFV можно использовать два основных подхода, со своими достоинствами и недостатками: Метод Достоинства Недостатки Эмуляция Высокая точность, возможность использования настоящего ПО Возможная несовместимость конфигурации с реальным оборудованием Построение сети на реальном оборудовании Высокая точность результатов Высокая стоимость С началом развития в сфере SDN-сетей появилось два эмулятора SDN-сетей, которые в добавок поддерживают симуляцию (возможность тестирования сети, часть оборудования в которой реальна и часть - эмулирована). Рассмотрим эмуляторы подробнее. Mininet Эмулятор, находящийся в свободном доступе, большая часть которого написана на языке Python. Работает с “легковесной” виртуализацией, то есть вся эмулируемая сеть реальна, в том числе и конечные виртуальные машины. Есть возможность подключения любых виртуальных коммутаторов и контроллеров. Достоинства Недостатки Открытый код, бесплатность, быстродействие, поддержка всех контроллеров SDN и протоколов OpenFlow вплоть до 1.3, большое количество обучающих видео Высокая сложность, необходимо знание Python и Linux, отсутствие полноценного графического интерфейса Estinet Эмулятор, все права на который имеет компания Estinet, но для студентов и всех желающих попробовать есть свободный доступ на месяц. Есть удобный графический интерфейс для построения топологии сети, редакции свойств оборудования и запуска эмуляции. Достоинства Недостатки Наглядность, простота настройки и установки, возможность эмуляции LTE и Wi-Fi сетей Закрытость, малое количество обучающих статей и видео, низкая производительность работы, более высокая сложность настройки при использовании не встроенного контроллера Ниже приведена часть программного кода на языке Python для построения сети в эмуляторе Mininet: # Инициализация топологии Topo.__init__( self, **opts ) # Добавление узлов, первые - коммутаторы S1 = self.addSwitch( 's0' ) S2 = self.addSwitch( 's1' ) S3 = self.addSwitch( 's2' ) S4 = self.addSwitch( 's3' ) S5 = self.addSwitch( 's4' ) S6 = self.addSwitch( 's5' ) S7 = self.addSwitch( 's6' ) S8 = self.addSwitch( 's7' ) S9 = self.addSwitch( 's8' ) S10= self.addSwitch( 's9' ) S11= self.addSwitch( 's10') # Далее - рабочие станции(виртуальные машины) H1= self.addHost( 'h0' ) H2 = self.addHost( 'h1' ) H3 = self.addHost( 'h2' ) H4 = self.addHost( 'h3' ) H6 = self.addHost( 'h5' ) H7 = self.addHost( 'h6' ) H8 = self.addHost( 'h7' ) H9 = self.addHost( 'h8' ) H10 = self.addHost( 'h9' ) H11 = self.addHost( 'h10' ) # Добавление каналов связи между коммутатором и рабочей станцией self.addLink( S1 , H1 ) self.addLink( S2 , H2 ) self.addLink( S3 , H3 ) self.addLink( S4 , H4 ) self.addLink( S7 , H7 ) self.addLink( S8 , H8) self.addLink( S9 , H9) self.addLink( S10 , H10) self.addLink( S11 , H11) # Добавление каналов связи между коммутаторами self.addLink( S1 , S2, bw=1, delay='0.806374975652ms') self.addLink( S1 , S3, bw=1, delay='0.605826192092ms') self.addLink( S2 , S11, bw=1000, delay='1.362717203ms') self.addLink( S3 , S10, bw=1000, delay='0.557936322ms') self.addLink( S4 , S5, bw=1000, delay='1.288738ms') self.addLink( S4 , S7, bw=1000, delay='1.1116865ms') self.addLink( S5 , S6, bw=1000, delay='0.590828707ms') self.addLink( S5 , S7, bw=1000, delay='0.9982281ms') self.addLink( S6 , S10, bw=1000, delay='1.203263ms') self.addLink( S7 , S8, bw=1000, delay='0.2233403ms') self.addLink( S8 , S9, bw=1000, delay='1.71322726ms') self.addLink( S8 , S11, bw=1000, delay='0.2409477ms') self.addLink( S9 , S10, bw=1000, delay='1.343440256ms') self.addLink( S10 , S11, bw=1000, delay='0.544934977ms') Сравнение контроллеров для построения сети В данный момент, существует большое количество платных и бесплатных(открытых) контроллеров. Все нижеперечисленные можно скачать и установить на домашнюю систему или виртуальную машину. Рассмотрим самые популярные открытые контроллеры и их плюсы и минусы: NOX - один из первых контроллеров, написан на языке C++; POX - контроллер, похожий на NOX и написанный на языке Python; OpenDayLight- контроллер, поддерживаемый многими корпорациями, написан на языке Java и постоянно развивающийся; RunOS- российская разработка от Центра Прикладного Исследования Компьютерных Сетей (ЦПИКС), имеет графический интерфейс, подробную документацию и заявлена самая высокая производительность. В таблице ниже рассмотрим плюсы и минусы каждого из контроллеров: Название контроллера Достоинства Недостатки NOX Скорость работы Низкое количество документации, необходимость знания C++ POX Проще обучиться, много документации Низкая скорость работы, необходимость знания Python, сложная реализация совместимости с NFV OpenDayLight Наличие графического интерфейса, поддержка VTN-сетей(NFV), наличие коммерческих продуктов на базе данного контроллера(Cisco XNC) Сложность в использовании, сложная установка RunOS Высокая производительность, Российская разработка, Открытый код, Наличие графического интерфейса Ранняя версия, возможные проблемы в эксплуатации по причине сырости продукта.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59